KNOWLEDGE EXPRESSION AND GRAPH CONSTRUCTION OF HOT SPOT EFFECT FAULTS OF PHOTOVOLTAIC MODULES

Wang Daolei, Zhang Zhen, Zheng Xin, Fang Mengxin, Zhu Rui, Zhao Wenbin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 538-546.

PDF(1586 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1586 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 538-546. DOI: 10.19912/j.0254-0096.tynxb.2024-0786

KNOWLEDGE EXPRESSION AND GRAPH CONSTRUCTION OF HOT SPOT EFFECT FAULTS OF PHOTOVOLTAIC MODULES

  • Wang Daolei1, Zhang Zhen1, Zheng Xin2, Fang Mengxin1, Zhu Rui1, Zhao Wenbin1
Author information +
History +

Abstract

This paper proposes a method for constructing a knowledge graph for hot-spot failures. First, the hot-spot failure knowledge representation is standardized, and relevant text information is collected to create a corpus. Secondly, an improved RoBERTa-BiLSTM-MHA-CRF model is used to identify entities related to hot-spot failures. Based on this, the BERT model is used for relationship extraction. Finally, the results of these two parts are integrated to construct a complete hot-spot failure knowledge graph. Experimental results show that the proposed entity recognition model achieves an accuracy of 96.02% for hot-spot failure knowledge, a recall rate of 93.56%, and an F1 value of 94.77%. This method precisely constructs a knowledge graph for hot spot faults in photovoltaic modules,enabling intelligent fault diagnosis of PV modules and offering strong support for subsequent applications.

Key words

deep learning / photovoltaic modules / natural language processing / knowledge graph / RoBERTa-BiLSTM-MHA-CRF

Cite this article

Download Citations
Wang Daolei, Zhang Zhen, Zheng Xin, Fang Mengxin, Zhu Rui, Zhao Wenbin. KNOWLEDGE EXPRESSION AND GRAPH CONSTRUCTION OF HOT SPOT EFFECT FAULTS OF PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 538-546 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0786

References

[1] 伊纪禄, 刘文祥, 马洪斌, 等. 太阳电池热斑现象和成因的分析[J]. 电源技术, 2012, 36(6): 816-818.
YI J L, LIU W X, MA H B, et al. Solar hot spot phenomenon and its analysis[J]. Chinese journal of power sources, 2012, 36(6): 816-818.
[2] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al. Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[3] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al. Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
[4] 蔡洁聪, 吕洪坤, 朱凌云, 等. 光伏发电站热斑检测技术综述[J]. 电源技术, 2021, 45(5): 683-685.
CAI J C, LYU H K, ZHU L Y, et al. Review of hot spot detection technology in photovoltaic power station[J]. Chinese journal of power sources, 2021, 45(5): 683-685.
[5] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536.
WANG D L, YAO C R, LI C, et al. Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536.
[6] 俞伊丽, 张展耀, 接晓霞, 等. 基于知识图谱与SCD文件的智能变电站二次检修安全措施自动生成技术研究[J]. 电力系统保护与控制, 2024, 52(2): 129-142.
YU Y L, ZHANG Z Y, JIE X X, et al. Automatic generation technology of secondary safety measures in an intelligent substation based on a knowledge graph and SCD files[J]. Power system protection and control, 2024, 52(2): 129-142.
[7] 武霁阳, 李强, 陈潜, 等. 知识图谱框架下基于深度学习的HVDC系统故障辨识[J]. 电力系统保护与控制, 2023, 51(20): 160-169.
WU J Y, LI Q, CHEN Q, et al. Fault identification of an HVDC system based on deep learning in the framework of a knowledge graph[J]. Power system protection and control, 2023, 51(20): 160-169.
[8] 黄简, 杨程, 冯天波, 等. 面向风电机组运维的知识图谱构建研究与应用[J]. 电力系统保护与控制, 2024, 52(8): 167-177.
HUANG J, YANG C, FENG T B, et al. Research and application of knowledge graph construction for wind turbine operation and maintenance[J]. Power system protection and control, 2024, 52(8): 167-177.
[9] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL].2019: arXiv: 1907.11692. https://arxiv.org/abs/1907.11692
[10] ZHANG P F, LI T R, WANG G Q, et al.Multi-source information fusion based on rough set theory: a review[J]. Information fusion, 2021, 68: 85-117.
[11] LI J N, LI D X, SAVARESE S, et al. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models[EB/OL].2023: arXiv: 2301.12597. https://arxiv.org/abs/2301.12597
[12] YANG X, ZHANG H W, CAI J F.Deconfounded image captioning: a causal retrospect[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(11): 12996-13010.
[13] 蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报, 2020, 31(2): 302-320.
CAI L, WANG S T, LIU J H, et al. Survey of data annotation[J]. Journal of software, 2020, 31(2): 302-320.
[14] YUN W, ZHANG X, LI Z D, et al.Knowledge modeling: a survey of processes and techniques[J]. International journal of intelligent systems, 2021, 36(4): 1686-1720.
[15] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37.
ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer engineering, 2022, 48(3): 23-37.
[16] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].2015: arXiv: 1508.01991. https://arxiv.org/abs/1508.01991
[17] 戴志辉, 张富泽, 张近月, 等. 基于MacBERT-BiLSTM-CRF模型的继电保护装置缺陷知识图谱构建方法[J]. 电力系统保护与控制, 2024, 52(20): 131-143.
DAI Z H, ZHANG F Z, ZHANG J Y, et al. Construction method of a defect knowledge map of a relay protection device based on a MacBERT-BiLSTM-CRF model[J]. Power system protection and control, 2024, 52(20): 131-143.
[18] CHUNG Y A, ZHU C G, ZENG M.SPLAT: speech-language joint pre-training for spoken language understanding[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 2021: 1897-1907.
[19] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar, 2014: 1724-1734.
PDF(1586 KB)

Accesses

Citation

Detail

Sections
Recommended

/