HYBRID ENERGY STORAGE WIND POWER FLUCTUATION STABILIZATION STRATEGY BASED ON MULTI-LAYER ENERGY MANAGEMENT

Yan Laiqing, Wang Kang, Xu Jiaqi, Zhai Zhuotao, Zheng Lixing, Liu Miao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 98-107.

PDF(2546 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2546 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 98-107. DOI: 10.19912/j.0254-0096.tynxb.2024-0812

HYBRID ENERGY STORAGE WIND POWER FLUCTUATION STABILIZATION STRATEGY BASED ON MULTI-LAYER ENERGY MANAGEMENT

  • Yan Laiqing1, Wang Kang1, Xu Jiaqi1, Zhai Zhuotao1, Zheng Lixing1, Liu Miao2,3
Author information +
History +

Abstract

This study examines a wind power fluctuation smoothing strategy for a hybrid energy storage system comprising supercapacitors and lithium batteries to achieve stable grid connection for wind power. An adaptive sliding average algorithm, which accounts for the upper limit of window length, is introduced to smooth real-time wind power. Subsequently, the computed hybrid power undergoes variational mode decomposition (VMD) to extract modal components, and composite entropy serves as the objective for the improved hunter-prey optimizer (IHPO) to optimize the predetermined VMD parameters. Secondly, the high and low-frequency cutoff points are established through the Hilbert transform, withhigh-frequency signals allocated to the supercapacitor and the low-frequency signal designated for the lithium batteries. A multilayer energy management strategy is proposed to achieve dynamic optimization and redistribution of hybrid energy storage power, taking into account the state of charge (SOC) during the charging and discharging processes of the energy storage devices. Finaly simulation resaalty confirm that the proposed strategy can effectively mitigate wind power fluctuations while ensuring that the state of charge (SOC) of both supercapacito, and lithium-ion batteries operates within acceptable ranges, resulting in a cumulative deviation reduction of 13.8% and 14.9%, respectively, compared to before pre-improvement.

Key words

wind power / energy management / variational mode decomposition / fluctuation smoothing / upper limit of window length / improved hunter-prey optimizer

Cite this article

Download Citations
Yan Laiqing, Wang Kang, Xu Jiaqi, Zhai Zhuotao, Zheng Lixing, Liu Miao. HYBRID ENERGY STORAGE WIND POWER FLUCTUATION STABILIZATION STRATEGY BASED ON MULTI-LAYER ENERGY MANAGEMENT[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 98-107 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0812

References

[1] 杨宇, 刘承良, 崔守军. “百年变局、能源风云、世界眼光、家国情怀”: “世界能源地理与国家安全” 专辑发刊词[J]. 自然资源学报, 2020, 35(11): 2569-2571.
YANG Y, LIU C L, CUI S J.Introduction to the special issue on world energy geography and national security[J]. Journal of natural resources, 2020, 35(11): 2569-2571.
[2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[3] ZHANG Y, XIAO L X, ZHOU H, et al.Control strategy of wind power smooth grid connection based on adaptive VMD and hybrid energy storage[J]. Journal of renewable and sustainable energy, 2022, 14(2): 023306.
[4] 刘颖明, 王树旗, 王晓东. 基于广义预测控制的风电场调频控制策略研究[J]. 太阳能学报, 2022, 43(3): 405-410.
LIU Y M, WANG S Q, WANG X D.Secondary frequency regulation control of wind farm based on genrealized predictive control[J]. Acta energiae solaris sinica, 2022, 43(3): 405-410.
[5] 王贝, 李宾宾, 孙广星, 等. 新型储能技术与产业发展研究[J]. 能源与节能, 2023(11): 8-13.
WANG B, LI B B, SUN G X, et al.Technologies and industrial development of new-type energy storage[J]. Energy and energy conservation, 2023(11): 8-13.
[6] 金阳. 新能源电力系统中的储能技术研究[J]. 低碳世界, 2023, 13(11): 49-51.
JIN Y.Research on energy storage technology in new energy power system[J]. Low carbon world, 2023, 13(11): 49-51.
[7] 王腾, 张新燕, 王亚东, 等. 基于二阶滤波的混合储能系统能量管理控制策略[J]. 太阳能学报, 2022, 43(11): 399-405.
WANG T, ZHANG X Y, WANG Y D, et al.Energy management control strategy of hybrid energy storage system based on second-order filtering[J]. Acta energiae solaris sinica, 2022, 43(11): 399-405.
[8] 靳雯皓, 刘继春, 刘俊勇. 平抑风电功率波动的新型储能系统控制策略[J]. 电测与仪表, 2018, 55(24): 78-87.
JIN W H, LIU J C, LIU J Y.A new strategy of energy storage system for smoothing wind power fluctuation[J]. Electrical measurement & instrumentation, 2018, 55(24): 78-87.
[9] 陈科彬, 邱晓燕, 史光耀, 等. 基于滑动平均与小波包分解的混合储能容量优化[J]. 电测与仪表, 2018, 55(7): 62-65.
CHEN K B, QIU X Y, SHI G Y, et al.Optimization of hybrid energy storage capacity based on moving average and wavelet packet decomposition[J]. Electrical measurement & instrumentation, 2018, 55(7): 62-65.
[10] LIU L J, DA C, ZHOU W, et al.A control strategy for hybrid energy storage based on double-layer fuzzy controller integrated with second-ahead control thought[J]. Journal of renewable and sustainable energy, 2019, 11(2): 024104.
[11] WU T Z, YU W S, GUO L X.A study on use of hybrid energy storage system along with variable filter time constant to smooth DC power fluctuation in microgrid[J]. IEEE access, 2019, 7: 175377-175385.
[12] 秦磊, 董海鹰, 王润杰. 基于卡尔曼滤波和模型预测控制的混合储能平抑风电功率波动策略[J]. 电网技术, 2024, 48(10): 4286-4297.
QIN L, DONG H Y, WANG R J.Hybrid energy storage based on Kalman filter and model predictive control to smooth out wind power fluctuation strategy[J]. Power system technology, 2024, 48(10): 4286-4297.
[13] 张琦, 谢丽蓉, 王威, 等. 计及补偿风电预测误差和平抑波动的混合储能分区优化控制策略[J]. 太阳能学报, 2023, 44(7): 7-13.
ZHANG Q, XIE L R, WANG W, et al.Optimal control strategy for hybrid energy storage zoning considering compensating wind power forecasting error and smoothing fluctuation[J]. Acta energiae solaris sinica, 2023, 44(7): 7-13.
[14] 薛田良, 蒋峰, 张磊, 等. 风储系统混合储能的功率分配与双层能量管理策略[J]. 三峡大学学报(自然科学版), 2023, 45(1): 80-87.
XUE T L, JIANG F, ZHANG L, et al.Strategy of power allocation and two-layer energy management in hybrid energy storage[J]. Journal of China Three Gorges University (natural sciences), 2023, 45(1): 80-87.
[15] 付华, 陆鹏, 张俊男. 基于A-SA-WOA算法的直流微电网全钒液流电池储能系统功率分配策略[J]. 电工技术学报, 2023, 38(7): 1826-1837.
FU H, LU P, ZHANG J N.Power allocation strategy of DC microgrid all vanadium redox flow battery energy storage system based on A-SA-WOA algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1826-1837.
[16] 李志强, 李赛, 王凡凯. 平抑风电波动的混合储能系统自适应控制策略[J]. 现代电力, 2020, 37(6): 646-653.
LI Z Q, LI S, WANG F K.Adaptive control strategy of hybrid energy storage system for mitigating wind power fluctuations[J]. Modern electric power, 2020, 37(6): 646-653.
[17] 赵靖英, 乔珩埔, 姚帅亮, 等. 考虑储能SOC自恢复的风电波动平抑混合储能容量配置策略[J]. 电工技术学报, 2024, 39(16): 5206-5219.
ZHAO J Y, QIAO H P, YAO S L, et al.Hybrid energy storage system capacity configuration strategy for stabilizing wind power fluctuation considering SOC self-recovery[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5206-5219.
[18] 毛志宇, 李培强, 肖家杰, 等. 面向风功率波动平抑的电池储能双层协调控制策略[J]. 中国电机工程学报, 2024, 44(16): 6494-6507.
MAO Z Y, LI P Q, XIAO J J, et al.Coordinated two-layer control strategy of battery energy storage for wind power fluctuate mitigation[J]. Proceedings of the CSEE, 2024, 44(16): 6494-6507.
[19] LI Q S, LI Z, ZHANG Z F, et al.Energy storage capacity optimization strategy for combined wind storage system[J]. Energy reports, 2022, 8: 247-252.
[20] ABDULGALIL M A, KHALID M, ALISMAIL F.Optimizing a distributed wind-storage system under critical uncertainties using benders decomposition[J]. IEEE access, 2019, 7: 77951-77963.
[21] 李鑫, 王娟, 邱亚, 等. 基于VMD的混合储能容量优化配置[J]. 太阳能学报, 2022, 43(2): 88-96.
LI X, WANG J, QIU Y, et al.Optimal allocation of hybrid energy storage capacity based on variational mode decomposition[J]. Acta energiae solaris sinica, 2022, 43(2): 88-96.
[22] NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A.Hunter-prey optimization: algorithm and applications[J]. Soft computing, 2022, 26(3): 1279-1314.
[23] 马驰, 曾国辉, 黄勃, 等. 融合混沌对立和分组学习的海洋捕食者算法[J]. 计算机工程与应用, 2022, 58(22): 271-283.
MA C, ZENG G H, HUANG B, et al.Marine predator algorithm based on chaotic opposition learning and group learning[J]. Computer engineering and applications, 2022, 58(22): 271-283.
PDF(2546 KB)

Accesses

Citation

Detail

Sections
Recommended

/