STUDY ON IDENTIFICATION OF STRUCTURAL MODAL PARAMETERS FOR JACKET OFFSHORE WIND TURBINES

Gao Shan, Zhang Chen, Ren Xiudi, Lu Dongzhe, Wang Bin, Han Xu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 108-115.

PDF(1650 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1650 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 108-115. DOI: 10.19912/j.0254-0096.tynxb.2024-0813

STUDY ON IDENTIFICATION OF STRUCTURAL MODAL PARAMETERS FOR JACKET OFFSHORE WIND TURBINES

  • Gao Shan1, Zhang Chen2,3, Ren Xiudi1, Lu Dongzhe2, Wang Bin1, Han Xu2,3
Author information +
History +

Abstract

A study on modal parameter identification of large jacket offshore wind turbine structures under operating conditions was carried out, and the robustness of the method under non-ideal white noise excitation conditions was investigated. Combined with hierarchical clustering algorithm, the covariance-driven stochastic subspace identification(COV-SSI) method was established to realize the automatic identification of modal parameters of wind turbine structures. The effectiveness and accuracy of the proposed identification method were firstly verified based on a numerical example of a three-story frame under stationary excitation. Then, based on scaled experiments of offshore wind turbine structure with a large jacket foundation, the accuracy and robustness of the modal identification method for offshore wind turbine under different wind and wave excitations were investigated. The results show that under rated wind speed, the method can effectively identify the first two natural frequencies and modal shapes of the structure with high accuracy.

Key words

offshore wind turbines / modal analysis / hierarchical clustering / stochastic subspace identification / jacket foundation

Cite this article

Download Citations
Gao Shan, Zhang Chen, Ren Xiudi, Lu Dongzhe, Wang Bin, Han Xu. STUDY ON IDENTIFICATION OF STRUCTURAL MODAL PARAMETERS FOR JACKET OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 108-115 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0813

References

[1] GWEC. Global wind report 2023[R]. Brussels, Belgium: GWEC, 2023.
[2] 吕致为, 王永, 邓奇蓉. 考虑时间窗约束的海上风电机组运维方案优化[J]. 太阳能学报, 2022, 43(10): 177-185.
LYU Z W, WANG Y, DENG Q R.Optimization of maintenance scheme for offshore wind turbines considering time window[J]. Acta energiae solaris sinica, 2022, 43(10): 177-185.
[3] 卢光坤, 陈旭光, 杜文博, 等. 考虑桩-土作用及冲刷影响的海上风电结构损伤检测研究[J]. 振动与冲击, 2023, 42(1): 105-114.
LU G K, CHEN X G, DU W B, et al.Damage detection of offshore wind power structures considering pile-soil interaction and scour[J]. Journal of vibration and shock, 2023, 42(1): 105-114
[4] 张天翼, 李昕, 王文华. 地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究[J]. 太阳能学报, 2022, 43(10): 243-251.
ZHANG T Y, LI X, WANG W H.Research of coupling mechanismes of offshore wind turbine integrated with mariculture under earthquake, wind and wave loads[J]. Acta energiae solaris sinica, 2022, 43(10): 243-251.
[5] ZHAO Y, PAN J N, HUANG Z Y, et al.Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions[J]. Engineering structures, 2020, 205: 110071.
[6] 姜卫, 杨春侠, 崔鸿知. 基于随机子空间法的风电塔筒模态参数识别研究[J]. 能源与节能, 2023(6): 8-13.
JIANG W, YANG C X, CUI H Z.Identification of wind turbine tower modal parameters based on stochastic subspace method[J]. Energy and energy conservation, 2023(6): 8-13.
[7] MOYNIHAN B, MEHRJOO A, MOAVENI B, et al.System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements[J]. Renewable energy, 2023, 219: 119430.
[8] ZHOU L, LI Y, LIU F S, et al.Investigation of dynamic characteristics of a monopile wind turbine based on sea test[J]. Ocean engineering, 2019, 189: 106308.
[9] 王振双, 徐明强, 彭潜. 基于实测数据的海上风电结构动力响应分析[J]. 海洋工程, 2023, 41(3): 48-55.
WANG Z S, XU M Q, PENG Q.Analyzing the dynamic response of an offshore wind turbine with field test data[J]. The ocean engineering, 2023, 41(3): 48-55.
[10] MAGALHÃES F, CUNHA Á, CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical systems and signal processing, 2009, 23(2): 316-329.
[11] DEVRIENDT C, MAGALHÃES F, WEIJTJENS W, et al. Structural health monitoring of offshore wind turbines using automated operational modal analysis[J]. Structural health monitoring, 2014, 13(6): 644-659.
[12] 姜军倪, 董霄峰, 练继建, 等. 海上风电筒型基础结构体系阻尼特性研究[J]. 太阳能学报, 2022, 43(11): 285-291.
JIANG J N, DONG X F, LIAN J J, et al.Research on damping characteristics of offshore wind turbine system supported by bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(11): 285-291.
[13] 姜军倪, 董霄峰, 王海军, 等. 海上风电结构横风向气动力阻尼特性研究[J]. 太阳能学报, 2022, 43(9): 267-272.
JIANG J N, DONG X F, WANG H J, et al.Research on cross-wind aerodynamic damping characteristics of offshore wind turbine structure[J]. Acta energiae solaris sinica, 2022, 43(9): 267-272.
[14] AUGUSTYN D, SMOLKA U, TYGESEN U T, et al.Data-driven model updating of an offshore wind jacket substructure[J]. Applied ocean research, 2020, 104: 102366.
[15] SONG M M, PARTOVI MEHR N, MOAVENI B, et al.One year monitoring of an offshore wind turbine: variability of modal parameters to ambient and operational conditions[J]. Engineering structures, 2023, 297: 117022.
[16] POPKO W, VORPAHL F, ANTONAKAS P.Investigation of local vibration phenomena of a jacket sub-structure caused by coupling with other components of an offshore wind turbine[J]. Journal of ocean and wind energy, 2014, 1(2): 111-118.
[17] HUAN C Y, LU D Z, ZHAO S X, et al.Experimental study of ultra-large jacket offshore wind turbine under different operational states based on joint aero-hydro-structural elastic similarities[J]. Frontiers in marine science, 2022, 9: 915591.
[18] LU D Z, WANG W H, LI X.Experimental study of structural vibration control of 10-MW jacket offshore wind turbines using tuned mass damper under wind and wave loads[J]. Ocean engineering, 2023, 288: 116015.
[19] PEETERS B, DE ROECK G.Reference-based stochastic subspace identification for output-only modal analysis[J]. Mechanical systems and signal processing, 1999, 13(6): 855-878.
[20] 伊廷华. 结构健康监测教程[M]. 北京: 高等教育出版社, 2021.
YI T H.Structural health monitoring[M]. Beijing: Higher Education Press, 2021.
[21] VAN VONDELEN A A W, ILIOPOULOS A, NAVALKAR S T, et al. Modal analysis of an operational offshore wind turbine using enhanced Kalman filter-based subspace identification[J]. Wind energy, 2023, 26(9): 923-945.
[22] YAN W J, ZHAO M Y, SUN Q, et al.Transmissibility-based system identification for structural health monitoring: fundamentals, approaches, and applications[J]. Mechanical systems and signal processing, 2019, 117: 453-482.
[23] 王茂华, 迟世春, 周雄雄. 基于地震记录和SSI方法的高土石坝模态识别[J]. 岩土工程学报, 2021, 43(7): 1279-1287.
WANG M H, CHI S C, ZHOU X X.Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese journal of geotechnical engineering, 2021, 43(7): 1279-1287.
[24] BAK C, ZAHLE F, BITSCHE R, et al.The DTU 10-MW reference wind turbine[C]//Danish Wind Power Research 2013.
Fredericia, Denmark, 2013.
[25] MAZZONI S, MCKENNA F, SCOTT M H, et al.OpenSees command language manual[M]. Berkeley: Pacific Earthquake Engineering Research (PEER) Center, 2006: 137-158.
PDF(1650 KB)

Accesses

Citation

Detail

Sections
Recommended

/