STUDY ON MICROBIAL-DRIVEN SELECTIVE LIGNIN DEGRADATION CAPACITY OF RICE STRAW BASED ON BMP METHOD

Cheng Huiting, Zhao Nan, Zeng Shangpeng, Huang Wanyuan, Gong Yuanjuan, Ren Dezhi

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 485-493.

PDF(3342 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3342 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (12) : 485-493. DOI: 10.19912/j.0254-0096.tynxb.2024-0816

STUDY ON MICROBIAL-DRIVEN SELECTIVE LIGNIN DEGRADATION CAPACITY OF RICE STRAW BASED ON BMP METHOD

  • Cheng Huiting, Zhao Nan, Zeng Shangpeng, Huang Wanyuan, Gong Yuanjuan, Ren Dezhi
Author information +
History +

Abstract

Based on the bio-mechanical pulping method, the selective degradation of rice straw lignin by five microorganisms was evaluated by analyzing the model of straw component transformation, microscopic fiber morphology changes, and multidimensional mechanical property indexes. A lignin degradation reactor was designed for experimentation, and the results show that Phanerochaete chrysosporium had the highest lignin degradation rate (53.6%), priority index (49.64), and selectivity coefficient (4.0606). The straw treated by this fungus exhibits significant improvements in tensile strength (19.24%), shear strength (30.35%), flexural strength (8.86%), and elastic modulus (15.32%). Microscopic morphology analysis indicates that the fiber length and width are reduced by 4.69% and 27.32%, respectively, with a fiber aspect ratio of 45.075. Simulation results demonstrated that the reactor has good flow and mixing performance.

Key words

biomass / pulp refining / computational fluid dynamics / straw component transformation model / multidimensional mechanical property / microscopic fiber morphology analysis

Cite this article

Download Citations
Cheng Huiting, Zhao Nan, Zeng Shangpeng, Huang Wanyuan, Gong Yuanjuan, Ren Dezhi. STUDY ON MICROBIAL-DRIVEN SELECTIVE LIGNIN DEGRADATION CAPACITY OF RICE STRAW BASED ON BMP METHOD[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 485-493 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0816

References

[1] 周虎毅, 沈葵忠, 韩善明, 等. 水稻秸秆好氧发酵行为及其生物机械制浆性能探讨[J]. 林产化学与工业, 2023, 43(4): 99-106.
ZHOU H Y, SHEN K Z, HAN S M, et al.Aerobic fermentation behavior and bio-mechanical pulping performance of rice straw[J]. Chemistry and industry of forest products, 2023, 43(4): 99-106.
[2] 杨杰, 张静, 孙欣伊, 等. 基于MOPSO的荞麦秸秆育苗钵成型工艺参数优化[J]. 太阳能学报, 2023, 44(5): 1-9.
YANG J, ZHANG J, SUN X Y, et al.Optimization of process parameters of buckwheat straw seedling Boxing based on mopso[J]. Acta energiae solaris sinica, 2023, 44(5): 1-9.
[3] 刘德军, 高翔, 邱硕, 等. 玉米秸秆制板剩余物压缩成型试验[J]. 太阳能学报, 2021, 42(1): 333-341.
LIU D J, GAO X, QIU S, et al.Compression molding test of waste material in processing of straw particle board[J]. Acta energiae solaris sinica, 2021, 42(1): 333-341.
[4] 刘瑞, 张丽, 孙鹏, 等. 微生物法降解木质素的研究进展[J]. 微生物学通报, 2023, 50(7): 3232-3244.
LIU R, ZHANG L, SUN P, et al.Microbial degradation of lignin: a review[J]. Microbiology China, 2023, 50(7): 3232-3244.
[5] WANG Y Y, WEI Y Q, ZHOU K Y, et al.Regulating pH and Phanerochaete chrysosporium inoculation improved the humification and succession of fungal community at the cooling stage of composting[J]. Bioresource technology, 2023, 384: 129291.
[6] XU Z Y, PENG B, KITATA R B, et al.Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis[J]. Biotechnology for biofuels and bioproducts, 2022, 15(1): 117.
[7] KUMAR R, SINGH A, MAURYA A, et al.Effective bioremediation of pulp and paper mill wastewater using Bacillus cereus as a possible kraft lignin-degrading bacterium[J]. Bioresource technology, 2022, 352: 127076.
[8] 司徒成, 余天华, 宋宇欣. 不同食用菌对猕猴桃枝木质纤维素降解的比较[J]. 北方园艺, 2022(5): 111-118.
SITU C, YU T H, SONG Y X.Comparison on lignocellulose degradation of kiwifruit branches by different edible fungi[J]. Northern horticulture, 2022(5): 111-118.
[9] NDE D B, MULEY P D, SABLIOV C M, et al.Microwave assisted pyrolysis of kraft lignin in single mode high-Q resonant cavities: degradation kinetics, product chemical composition, and numerical modeling[J]. Energy conversion and management, 2021, 230: 113754.
[10] KLEINER T, GOTTANKA M, STARY A, et al.CFD-Simulation einer generischen Reaktion in einem gerührten Behälter[J]. Chemie ingenieur technik, 2020, 92(8): 1065-1073.
[11] WANG Y C, LIU S S, LIU X J, et al.Biological pretreatment of biomass to decrease energy consumption in mechanical defiberization process[J]. BioResources, 2020, 15(4): 9882-9893.
[12] CHENG H T, GONG Y J, ZHAO N, et al.Simulation and experimental validation on the effect of twin-screw pulping technology upon straw pulping performance based on tavares mathematical model[J]. Processes, 2022, 10(11): 2336.
[13] 李少白, 胡钊晨, 寇巍. 基于非牛顿性的牛粪厌氧发酵过程的数值模拟[J]. 太阳能学报, 2021, 42(7): 469-473.
LI S B, HU Z C, KOU W.Numerical simulation of cow manure anaerobic digestion based on non-Newtonian property[J]. Acta energiae solaris sinica, 2021, 42(7): 469-473.
[14] 王延鹏, 汪小旵, 施印炎, 等. 不同耕作方式下水稻田麦秸降解效果[J]. 农业工程学报, 2021, 37(15): 239-247.
WANG Y P, WANG X C, SHI Y Y, et al.Decomposition of wheat stalk under different tillages in rice field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 239-247.
[15] 邵丽杰, 寇巍, 姜月, 等. 秸秆汽提水解碳化预处理装置设计与效果分析[J]. 太阳能学报, 2024, 45(5): 153-157.
SHAO L J, KOU W, JIANG Y, et al.Design and effect analysis of steam explosion pretreatment device for corn stalk pyrolysis carbonization[J]. Acta energiae solaris sinica, 2024, 45(5): 153-157.
[16] SUN E H, ZHANG Y, YONG C, et al.Biological fermentation pretreatment accelerated the depolymerization of straw fiber and its mechanical properties as raw material for mulch film[J]. Journal of cleaner production, 2021, 284: 124688.
[17] 李梦扬, 张涛, 项钰洲, 等. 玉米秸秆不同部位化学组成及纤维形态分析[J]. 中国造纸学报, 2023, 38(2): 92-97.
LI M Y, ZHANG T, XIANG Y Z, et al.Analysis of chemical composition and fiber morphology of different parts of corn stalk[J]. Transactions of China pulp and paper, 2023, 38(2): 92-97.
[18] 徐鹏, 孙金贵, 岳广全, 等. 碳纤维增强热固性织物预浸料压实行为的试验研究[J]. 合成纤维, 2024, 53(5): 61-67, 72.
XU P, SUN J G, YUE G Q, et al.Experimental study on compacting performance of carbon fiber reinforced thermosetting textile prepreg[J]. Synthetic fiber in China, 2024, 53(5): 61-67, 72.
[19] ZHANG L T, SHAO G Q, JIN Y M, et al.Efficient hemicellulose removal from lignocellulose by induced electric field-aided dilute acid pretreatment[J]. International journal of biological macromolecules, 2024, 261: 129839.
[20] EURING M, OSTENDORF K, RÜHL M, et al. Enzymatic oxidation of Ca-lignosulfonate and kraft lignin in different lignin-laccase-mediator-systems and MDF production[J]. Frontiers in bioengineering and biotechnology, 2021, 9: 788622.
[21] WU F F, WANG H Q, CHEN Q F, et al.Lignin promotes mycelial growth and accumulation of polyphenols and ergosterol in lentinula edodes[J]. Journal of fungi, 2023, 9(2): 237.
[22] QI L T, LIU J K, PENG J M, et al.The dual effect of ionic liquid pretreatment on the eucalyptus kraft pulp during oxygen delignification process[J]. Polymers, 2021, 13(10): 1600.
[23] KANDEL K P, ADHIKARI M, KHAREL M, et al.Comparative study on material properties of wood-ash alkali and commercial alkali treated Sterculia fiber[J]. Cellulose, 2022, 29(10): 5913-5922.
[24] GACIAS-AMENGUAL N, WOHLSCHLAGER L, CSARMAN F, et al.Fluorescent imaging of extracellular fungal enzymes bound onto plant cell walls[J]. International journal of molecular sciences, 2022, 23(9): 5216.
[25] WEI J H, WANG L Z, ZHAI S C, et al.Depolymerization behaviors of naked oat stem cell wall during autohydrolysis in subcritical water[J]. Industrial crops and products, 2021, 170: 113679.
[26] NICOLAS W J, FÄßLER F, DUTKA P, et al. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks[J]. Current biology, 2022, 32(11): 2375-2389.e6.
[27] ALI-ELDIN S S, ABD EL-MOEZZ S M, MEGAHED M, et al. Study of hybridization effect of new developed rice straw mat/glass fiber reinforced polyester composite[J]. Journal of natural fibers, 2021, 18(8): 1194-1206.
[28] 李希越, 王洪波, 赵玉晓, 等. 好氧生物预处理时间对玉米秸秆水解酸化的影响[J]. 生物质化学工程, 2022, 56(1): 13-22.
LI X Y, WANG H B, ZHAO Y X, et al.Effect of aerobic biological pretreatment time on hydrolytic acidification of corn straw[J]. Biomass chemical engineering, 2022, 56(1): 13-22.
[29] OANH N T, DUC H D. Enhanced anaerobic degradation of thiobencarb using a horizontal-flow anaerobic immobilized biomass bioreactor[J]. FEMS microbiology letters, 2022, 368(21-24): fnac001.
[30] PANUNZI A, MORONI M, MAZZELLI A, et al.Industrial case-study-based computational fluid dynamic (CFD) modeling of stirred and aerated bioreactors[J]. ACS omega, 2022, 7(29): 25152-25163.
[31] ZHOU X Y, BIAN G Q, WANG Y, et al.Efficient numerical simulation of biochemotaxis phenomena in fluid environments[J]. Entropy, 2023, 25(8): 1224.
[32] SHI G Y, SONG S F, SHI B H, et al.A new transient model for hydrate slurry flow in oil-dominated flowlines[J]. Journal of petroleum science and engineering, 2021, 196: 108003.
[33] 孙浩, 陈高攀, 刘双, 等. 基于厌氧发酵混合原料流变特性的CFD流场模拟分析[J]. 太阳能学报, 2023, 44(8): 542-549.
SUN H, CHEN G P, LIU S, et al.CFD flow field simulation analysis based on rheological characteristics of anaerobic fermentation mixed raw materials[J]. Acta energiae solaris sinica, 2023, 44(8): 542-549.
[34] 肖彬, 王鑫, 宋永一, 等. 生物质双流化床气固流动特性研究与数值模拟[J]. 太阳能学报, 2024, 45(3): 133-138.
XIAO B, WANG X, SONG Y Y, et al.Research and numerical simulation on gas solid flow characteristics of biomass dual fluidized bed[J]. Acta energiae solaris sinica, 2024, 45(3): 133-138.
[35] PENG J, SUN W, HAN H S, et al.CFD modeling and simulation of the hydrodynamics characteristics of coarse coal particles in a 3D liquid-solid fluidized bed[J]. Minerals, 2021, 11(6): 569.
PDF(3342 KB)

Accesses

Citation

Detail

Sections
Recommended

/