VIRTUAL FIREWALL-BASED THERMAL SPREAD SUPPRESSION STRATEGY FOR ELECTROCHEMICAL ENERGY STORAGE SYSTEM

Zhang Xiaolong, Sun Chengzhang, Wang Xu, Wang Linfei, Yang Guojing, Xu Ruijie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 41-51.

PDF(2939 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2939 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 41-51. DOI: 10.19912/j.0254-0096.tynxb.2024-0832

VIRTUAL FIREWALL-BASED THERMAL SPREAD SUPPRESSION STRATEGY FOR ELECTROCHEMICAL ENERGY STORAGE SYSTEM

  • Zhang Xiaolong1, Sun Chengzhang2, Wang Xu1, Wang Linfei1, Yang Guojing1, Xu Ruijie2
Author information +
History +

Abstract

To reduce the fire-fighting pressure of the traditional extinguishant and inhibit the occurrence and spread of thermal runaway in energy storage power stations, a fast discharge strategy based on the virtual firewall joint sampling point Kalman filtering algorithm and model predictive control algorithm is proposed for the energy storage compartment fire-fighting system that is commonly used nowadays. Firstly, the battery hierarchical warning strategy is utilized to illustrate the pre-warning and post-safety protection of the battery. Secondly, based on the battery thermoelectric coupling model, the temperature and SOC inside the battery are estimated using the extended Kalman filter algorithm and the sampling point Kalman filter algorithm. Finally, the model predictive optimal control joint sampling point Kalman filter algorithm is formulated based on the state space equations, and the explicit constraints are set on the battery current, voltage, temperature, and SOC to achieve the effect of fast discharge of lithium battery. The simulation results show that the proposed strategy can improve the estimation accuracy of the internal variable parameters of the system and reduce the risk of thermal runaway disasters.

Key words

energy storage power station / model predictive control / lithium-ion battery / battery charge spread / thermal spread / equivalent-circuit model

Cite this article

Download Citations
Zhang Xiaolong, Sun Chengzhang, Wang Xu, Wang Linfei, Yang Guojing, Xu Ruijie. VIRTUAL FIREWALL-BASED THERMAL SPREAD SUPPRESSION STRATEGY FOR ELECTROCHEMICAL ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 41-51 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0832

References

[1] 唐西胜, 李伟, 沈晓东. 面向新型电力系统的储能规划方法研究进展及展望[J]. 电力系统自动化, 2024, 48(9): 178-191.
TANG X S, LI W, SHEN X D.Research progress and prospect of energy storage planning method for new power system[J]. Automation of electric power systems, 2024, 48(9): 178-191.
[2] 陶致格, 朱顺兵, 侯双平, 等. 锂电池储能电站火灾与消防安全防护技术综合研究[J]. 储能科学与技术, 2024, 13(2): 536-545.
TAO Z G, ZHU S B, HOU S P, et al.Comprehensive research on fire and safety protection technology for lithium battery energy storage power stations[J]. Energy storage science and technology, 2024, 13(2): 536-545.
[3] 刘一帆, 常崇烨, 李舒泓, 等. 全氟己酮微乳液抑制锂离子电池热失控研究[J]. 中国安全生产科学技术, 2023, 19(9): 27-32.
LIU Y F, CHANG C Y, LI S H, et al.Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J]. Journal of safety science and technology, 2023, 19(9): 27-32.
[4] GB 50370—2005, 气体灭火系统设计规范[S].
GB 50370—2005, Code for design of gas fire extinguishing systems[S].
[5] DB37/T3642—2019, 全氟己酮灭火系统设计、施工及验收规范[S].
DB37/T3642—2019, Code for design,installation and commissioning of perfluorohexanone fire extinguishing systems[S].
[6] 蔡兴初, 朱一鸣, 姜可尚, 等. 全氟己酮气体灭火系统在磷酸铁锂电池储能预制舱的应用[J]. 储能科学与技术, 2022, 11(8): 2497-2504.
CAI X C, ZHU Y M, JIANG K S, et al.Application on perfluoro-2-methyl-3-pentanone in lithium battery premade energy storage cabin[J]. Energy storage science and technology, 2022, 11(8): 2497-2504.
[7] 周洁, 何骁龙. 全氟己酮和细水雾抑制三元锂离子电池火灾有效性研究[J]. 消防科学与技术, 2023, 42(2): 236-240.
ZHOU J, HE X L.Study on the effectiveness of C6F12O and water mist in suppressing thermal runaway fire of NCM lithium-ion battery[J]. Fire science and technology, 2023, 42(2): 236-240.
[8] YANG C B, SUNDERLIN N, WANG W, et al.Compressible battery foams to prevent cascading thermal runaway in Li-ion pouch batteries[J]. Journal of power sources, 2022, 541: 231666.
[9] WU S Y, PAN W J, ZHU M T.A collaborative estimation scheme for lithium-ion battery state of charge and state of health based on electrochemical model[J]. Journal of the electrochemical society, 2022, 169(9): 090516.
[10] MARELLI S, CORNO M.Model-based estimation of lithium concentrations and temperature in batteries using soft-constrained dual unscented Kalman filtering[J]. IEEE transactions on control systems technology, 2021, 29(2): 926-933.
[11] 范兴明, 封浩, 张鑫. 最小二乘算法优化及其在锂离子电池参数辨识中的应用[J]. 电工技术学报, 2024, 39(5): 1577-1588.
FAN X M, FENG H, ZHANG X.Optimization of least squares method and its application in parameter identification of lithium-ion battery model[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1577-1588.
[12] CHEN L G, HU M H, CAO K B, et al.Core temperature estimation based on electro-thermal model of lithium-ion batteries[J]. International journal of energy research, 2020, 44(7): 5320-5333.
[13] MENG J W, YUE M L, DIALLO D.Nonlinear extension of battery constrained predictive charging control with transmission of Jacobian matrix[J]. International journal of electrical power & energy systems, 2023, 146: 108762.
[14] 梁媛, 王红庆. 基于NSGA权值修正的MPC方法及其在光氢系统应用[J]. 太阳能学报, 2024, 45(11): 131-140.
LIANG Y, WANG H Q.MPC method based on nsga weight correction and its application in photohydrogen system[J]. Acta energiae solaris sinica, 2024, 45(11): 131-140.
[15] KHAN H F, HANIF A, ALI M U, et al.A Lagrange multiplier and sigma point Kalman filter based fused methodology for online state of charge estimation of lithium-ion batteries[J]. Journal of energy storage, 2021, 41: 102843.
[16] 杨夯, 黄小庆, 于慎仟, 等. 电化学储能电站主动安全研究[J]. 电力自动化设备, 2023, 43(8): 78-87.
YANG H, HUANG X Q, YU S Q, et al.Research on active safety of electrochemical energy storage station[J]. Electric power automation equipment, 2023, 43(8): 78-87.
[17] 邓捷, 陈宝辉, 陆佳政, 等. 低压二氧化碳与常规灭火剂抑制锂离子电池火灾特性对比[J]. 高电压技术, 2023, 49(1): 364-372.
DENG J, CHEN B H, LU J Z, et al.Comparative of the fire suppression characteristics of low-pressure carbon dioxide and conventional extinguishing agents on lithium-ions batteries[J]. High voltage engineering, 2023, 49(1): 364-372.
[18] 徐亮. 锂电池储能电站防消一体化系统设计及控制策略[J]. 太阳能学报, 2022, 43(5): 478-483.
XU L.Design and control strategy of integrated system of early warming and fire protection for lithium-ion batteries energy storage power station[J]. Acta energiae solaris sinica, 2022, 43(5): 478-483.
[19] 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538.
YANG M J, YANG A J, YE Y J, et al.Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538.
[20] DE SOUZA A K, PLETT G, TRIMBOLI M S. Lithium-ion battery charging control using a coupled electro-thermal model and model predictive control[C]//2020 IEEE Applied, Power Electronics Conference and Exposition (APEC). New Orleans, LA, USA, 2020: 3534-3539.
[21] ZHANG J N, YANG X G, SUN F C, et al.An online heat generation estimation method for lithium-ion batteries using dual-temperature measurements[J]. Applied energy, 2020, 272: 115262.
[22] 常小兵, 侯宗尚, 刘连起, 等. 基于电热耦合效应的锂电池荷电状态与温度状态联合估计[J]. 储能科学与技术, 2024, 13(4): 1142-1153.
CHANG X B, HOU Z S, LIU L Q, et al.Joint estimation of the state of charge and temperature of lithium batteries based on the electric thermal coupling effect[J]. Energy storage science and technology, 2024, 13(4): 1142-1153.
[23] DE SOUZA A K. Advanced predictive control strategies for lithium-ion battery management using a coupled electro-thermal model[D]. Springs: University of Colorado Colorado Springs, 2020.
[24] 杨斌, 樊立萍, 高迎慧, 等. 超高功率密度锂离子电池放电性能及容量预估研究[J]. 太阳能学报, 2023, 44(11): 419-425.
YANG B, FAN L P, GAO Y H, et al.Reserach on discharge performance and capacity prediction of ultra-high power density lithium-ion batteries[J]. Acta energiae solaris sinica, 2023, 44(11): 419-425.
[25] GUO X W, WU Q, XING C, et al.An active equalization method based on an inductor and a capacitor for series battery pack[J]. IEEE transactions on power electronics, 2023, 38(3): 4040-4052.
[26] 吴文进, 郭海婷, 苏建徽, 等. 基于自适应模糊PID算法的锂电池组双层均衡控制[J]. 电力系统保护与控制, 2024, 52(2): 111-117.
WU W J, GUO H T, SU J H, et al.Dual-layer equalization control of lithium batteries based on an adaptive fuzzy PID algorithm[J]. Power system protection and control, 2024, 52(2): 111-117.
[27] 钱广俊, 韩雪冰, 卢兰光, 等. 锂离子电池系统均衡策略研究进展[J]. 机械工程学报, 2022, 58(24): 145-162.
QIAN G J, HAN X B, LU L G, et al.Advances in lithium-ion battery system equalization strategy research[J]. Journal of mechanical engineering, 2022, 58(24): 145-162.
[28] 李革, 孔祥栋, 孙跃东, 等. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196.
LI G, KONG X D, SUN Y D, et al.Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data[J]. Energy storage science and technology, 2024, 13(4): 1188-1196.
PDF(2939 KB)

Accesses

Citation

Detail

Sections
Recommended

/