ACTIVE AND REACTIVE POWER DISTRIBUTION STRATEGY OF ENERGY STORAGE POWER STATION BASED ON IHAOAVOA

Li Ming, Wu Hongxin, Furifucairen, Zheng Yunping, Arthur Turhoun, Li Aikui

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 293-302.

PDF(1239 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1239 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 293-302. DOI: 10.19912/j.0254-0096.tynxb.2024-0844

ACTIVE AND REACTIVE POWER DISTRIBUTION STRATEGY OF ENERGY STORAGE POWER STATION BASED ON IHAOAVOA

  • Li Ming1, Wu Hongxin2, Furifucairen1, Zheng Yunping1, Arthur Turhoun1, Li Aikui2
Author information +
History +

Abstract

In this paper, a multi-objective model is established to distribute active and reactive power among subsystems within an energy storage power station. The combination of energy storage subsystems participating in active power distribution is obtained by taking SOC as the priority criterion. Taking energy consumption cost, life loss cost, SOC balance and reactive power regulation cost as targets, IHAOAVOA algorithm is adopted to solve the active and reactive power output of each subsystem. The simulation is verified on Matlab platform and compared with other strategies. The results show that the proposed optimization strategy can reduce the number of subsystems during charging and discharging of energy storaging, reduce the operating cost of energy storage, and improve the state balance of state of charge in energy storage.

Key words

energy storage / optimization algorithms / operating costs / state of charge / power distribution / SOC balance

Cite this article

Download Citations
Li Ming, Wu Hongxin, Furifucairen, Zheng Yunping, Arthur Turhoun, Li Aikui. ACTIVE AND REACTIVE POWER DISTRIBUTION STRATEGY OF ENERGY STORAGE POWER STATION BASED ON IHAOAVOA[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 293-302 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0844

References

[1] 吴青峰, 褚晓林, 于少娟, 等. 基于改进型P-E下垂控制的低压交流微电网不同容量储能单元SOC均衡策略[J]. 太阳能学报, 2023, 44(4): 266-275.
WU Q F, CHU X L, YU S J, et al.SOC balancing strategy of low voltage AC microgrids with different capacities base on improved P-E droop control[J]. Acta energiae solaris sinica, 2023, 44(4): 266-275.
[2] 李建林, 李雅欣, 黄碧斌, 等. 退役动力电池一致性评估及均衡策略研究[J]. 电力系统保护与控制, 2021, 49(12): 1-7.
LI J L, LI Y X, HUANG B B, et al.Research on consistency evaluation and control strategy of a retired power battery[J]. Power system protection and control, 2021, 49(12): 1-7.
[3] 陈薇, 狄那, 邱亚, 等. VRB储能系统多目标优化功率分配策略[J]. 高电压技术, 2020, 46(5): 1518-1527.
CHEN W, DI N, QIU Y, et al.Power distribution strategy based on multi-objective optimization of vanadium redox battery energy storage systems[J]. High voltage engineering, 2020, 46(5): 1518-1527.
[4] 叶晖, 李爱魁, 田刚领, 等. 考虑能量效率和SOC均衡的电池储能电站双层功率分配策略[J]. 中国电机工程学报, 2024, 44(13): 5185-5196.
YE H, LI A K, TIAN G L, et al.Double-layer power distribution strategy for battery storage power station considering energy efficiency and state-of-charge balance[J]. Proceedings of the CSEE, 2024, 44(13): 5185-5196.
[5] 赵熙临, 陈潇. 面向一次调频的储能电池多目标协同控制策略[J]. 太原理工大学学报, 2025, 56(3): 390-398.
ZHAO X L, CHEN X.Multi-objective cooperative control strategy of energy storage battery for primary frequency regulation[J]. Journal of Taiyuan University of Technology, 2025, 56(3): 390-398.
[6] 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37(23): 5976-5986.
LI J L, LI Y X, LIU H T, et al.Research on power distribution strategy considering the safety of energy storage power station[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5976-5986.
[7] 张浚坤, 雷二涛, 韩蓉, 等. 计及转化效率的电化学储能电站日运行策略研究[J]. 太阳能学报, 2024, 45(5): 198-205.
ZHANG J K, LEI E T, HAN R, et al.Study on operation strategy of electrochemical energy storage station with calculation and efficiency conversion[J]. Acta energiae solaris sinica, 2024, 45(5): 198-205.
[8] 刘畅, 吴西奇, 姜新宇, 等. 高压直挂大容量储能系统的电池堆分割方法[J]. 中国电机工程学报, 2023, 43(19): 7483-7497.
LIU C, WU X Q, JIANG X Y, et al.Battery stack segmentation method of the large-capacity high-voltage transformerless battery energy storage system[J]. Proceedings of the CSEE, 2023, 43(19): 7483-7497.
[9] 杨波, 冯鑫振, 王德顺, 等. 用于储能变流器的改进型VSG控制方法[J]. 电力建设, 2018, 39(4): 126-132.
YANG B, FENG X Z, WANG D S, et al.An improved VSG control method for energy storage converters[J]. Electric power construction, 2018, 39(4): 126-132.
[10] 刘瑞明, 王生铁, 刘广忱, 等. 基于虚拟阻抗的孤岛交流微电网混合储能控制策略研究[J]. 电测与仪表, 2019, 56(14): 116-123.
LIU R M, WANG S T, LIU G C, et al.Research on control strategy of hybrid energy storage in islanded AC micro-grid based on virtual impedance[J]. Electrical measurement & instrumentation, 2019, 56(14): 116-123.
[11] 李圣清, 刘博文, 李焕平, 等. 基于一致性算法光伏逆变器和储能分组协调电压控制策略[J].太阳能学报,2024, 45(9): 345-352.
LI S Q, LIU B W, LI H Q, et al.Coordinated voltage control strategy of photovoltaic inverters and energy storage group based on consensus algorithm[J]. Acta energiae solaris sinica,2024, 45(9): 345-352.
[12] 田刚领, 叶晖, 谢佳, 等. 锂离子电池储能电站能耗优化[J]. 高电压技术, 2023, 49(3): 1118-1127.
TIAN G L, YE H, XIE J, et al.Energy consumption optimization of lithium-ion battery storage power station[J]. High voltage engineering, 2023, 49(3): 1118-1127.
[13] 陈根, 蔡旭. 提升并联型风电变流器运行效率的自适应功率优化控制[J]. 中国电机工程学报, 2017, 37(22): 6492-6499, 6761.
CHEN G, CAI X.Adaptive power optimal control for operation efficiency improvement of parallel wind power converters[J]. Proceedings of the CSEE, 2017, 37(22): 6492-6499, 6761.
[14] 王雨虹, 梁策, 付华. 基于PSTSO多目标优化储能系统功率分配[J]. 电力系统及其自动化学报, 2024, 36(8): 13-22.
WANG Y H, LIANG C, FU H.Power allocation of energy storage system based on PSTSO multi-objective optimization[J]. Proceedings of the CSU-EPSA, 2024, 36(8): 13-22.
[15] 刘佳婕, 贾燕冰, 韩肖清, 等. 基于效能评估的混合储能电站调频功率优化[J]. 高电压技术, 2024, 50(6): 2467-2477.
LIU J J, JIA Y B, HAN X Q, et al.Frequency modulation power optimization of hybrid energy storage power station based on performance evaluation[J]. High voltage technology, 2024, 50(6): 2467-2477.
[16] 姚璐勤, 王琦, 李妍, 等. 计及设备损耗成本的含光储配电网分布式电压控制策略[J]. 电力工程技术, 2023, 42(6): 52-63.
YAO L Q, WANG Q, LI Y, et al.Distributed voltage control strategy of distribution network with photovoltaic and energy storage considering equipment loss cost[J]. Electric power engineering technology, 2023, 42(6): 52-63.
[17] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al.Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & industrial engineering, 2021, 157: 107250.
[18] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S.African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & industrial engineering, 2021, 158: 107408.
[19] XIAO Y N, GUO Y L, CUI H, et al.IHAOAVOA: an improved hybrid Aquila optimizer and African vultures optimization algorithm for global optimization problems[J]. Mathematical biosciences and engineering, 2022, 19(11): 10963-11017.
[20] 邱亚, 李鑫, 陈薇, 等. 基于P-AWPSO算法的全钒液流电池储能系统功率分配[J]. 高电压技术, 2020, 46(2): 500-510.
QIU Y, LI X, CHEN W, et al.Power distribution of vanadium redox battery energy storage system based on P-AWPSO algorithm[J]. High voltage engineering, 2020, 46(2): 500-510.
[21] 孙林, 李梦梦, 徐久成. 二进制哈里斯鹰优化及其特征选择算法[J]. 计算机科学, 2023, 50(5): 277-291.
SUN L, LI M M, XU J C.Binary Harris hawk optimization and its feature selection algorithm[J]. Computer science, 2023, 50(5): 277-291.
PDF(1239 KB)

Accesses

Citation

Detail

Sections
Recommended

/