MULTI-OBJECTIVE OPTIMAL ECONOMIC CONFIGURATION OF CCHP INDEPENDENT MICROGRID BASED ON HYDROGEN STORAGE CONSIDERING EXERGY EFFICIENCY

Ren Zhecheng, Yuan Zhi, Li Ji

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 717-728.

PDF(1370 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1370 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 717-728. DOI: 10.19912/j.0254-0096.tynxb.2024-0850

MULTI-OBJECTIVE OPTIMAL ECONOMIC CONFIGURATION OF CCHP INDEPENDENT MICROGRID BASED ON HYDROGEN STORAGE CONSIDERING EXERGY EFFICIENCY

  • Ren Zhecheng1, Yuan Zhi1, Li Ji2
Author information +
History +

Abstract

To balance exergy efficiency and economic cost of microgrids, and to ensure the accuracy and objectivity of the optimization results, a multi-objective capacity optimization method is proposed for hydrogen-based combined cooling, heating, and power (CCHP)independent microgrids, with a focus on exergy efficiency. First, the recovery of waste heat during the electricity-hydrogen-electricity conversion process is considered. An independent microgrid system is proposed, which includes wind and photovoltaic power systems, hydrogen storage systems, air source heat pumps, and absorption chillers. Secondly, the coupling relationship and energy utilization levels of various energy sources in the system are measured using exergy analysis. A multi-objective capacity optimization model is then created with the optimization goals of system's economic cost and exergy efficiency. Lastly, to acquire the best configuration results that consider system's economic cost and exergy efficiency, the ε-constraint approach in conjunction with CRITIC-TOPSIS is employed. The illustration verifies the validity of the proposed model and method, which can satisfy the demand of multiple loads in different typical day scenarios.

Key words

microgrids / hydrogen storage / exergy / multiobjective optimization / capacity configuration

Cite this article

Download Citations
Ren Zhecheng, Yuan Zhi, Li Ji. MULTI-OBJECTIVE OPTIMAL ECONOMIC CONFIGURATION OF CCHP INDEPENDENT MICROGRID BASED ON HYDROGEN STORAGE CONSIDERING EXERGY EFFICIENCY[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 717-728 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0850

References

[1] 李志伟, 赵雨泽, 吴培. 碳交易机制下绿氢蓝氢协调优化对综合能源系统的影响评估[J]. 太阳能学报, 2024, 45(10): 37-47.
LI Z W, ZHAO Y Z, WU P. Impact assessment of coordinated optimization of green hydrogen and blue hydrogen on integrated energy system under carbon trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(10): 37-47.
[2] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电—氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al. Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[3] 朱显辉, 胡旭, 师楠, 等. 考虑氢储动态效率的电氢耦合微网长期容量优化[J]. 高电压技术, 2023, 49(3): 1128-1139.
ZHU X H, HU X, SHI N, et al. Long-term capacity optimization of electrohydrogen coupled microgrid considering dynamic efficiency of hydrogen storage[J]. High voltage engineering, 2023, 49(3): 1128-1139.
[4] 岳大为, 赵文体, 袁行行, 等. 计及电-氢混合储能的孤岛直流微电网可靠性评估[J]. 电力工程技术, 2023, 42(3): 27-35.
YUE D W, ZHAO W T, YUAN H H, et al. Reliability evaluation of islanded DC microgrid considering electric-hydrogen hybrid energy storage[J]. Electric power engineering technology, 2023, 42(3): 27-35.
[5] 陈维荣, 傅王璇, 韩莹, 等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报, 2021, 56(3): 640-649.
CHEN W R, FU W X, HAN Y, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 640-649.
[6] 李奇, 邹雪俐, 蒲雨辰, 等. 基于氢储能的热电联供型微电网优化调度方法[J]. 西南交通大学学报, 2023, 58(1): 9-21.
LI Q, ZOU X L, PU Y C, et al. Optimal schedule of combined heat-power microgrid based on hydrogen energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21.
[7] 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43(6): 428-434.
ZHANG J H, KAN S J, HUA Y W, et al. Capacity optimization of chp microgrid based on hydrogen energy storage[J]. Acta energiae solaris sinica, 2022, 43(6): 428-434.
[8] 申航宇, 樊小朝, 史瑞静, 等. 独立光氢燃料电池热电联供系统容量配置优化[J]. 电气传动, 2022, 52(22): 44-50, 65.
SHEN H Y, FAN X C, SHI R J, et al. Capacity configuration optimization of cogeneration system for independent photohydrogen fuel cell[J]. Electric drive, 2022, 52(22): 44-50, 65.
[9] 刘鹏. 考虑不确定性的电-热-氢综合能源系统容量优化配置方法[D]. 武汉: 武汉理工大学, 2021.
LIU P. Capacity configuration optimization method of electricity heat hydrogen integrated energy system considering uncertainty[D]. Wuhan: Wuhan University of Technology, 2021.
[10] FACCI A L, UBERTINI S.Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios[J]. Applied energy, 2018, 216: 60-72.
[11] 胡枭, 李少伦, 王丹, 等. 㶲在综合能源系统中的理论、模型、应用综述及展望[J]. 电力建设, 2024, 45(3): 1-15.
HU X, LI S L, WANG D, et al. Review and prospect of exergy in theory, modelling, and applications of integrated energy systems[J]. Electric power construction, 2024, 45(3): 1-15.
[12] 苏慧玲, 杨世海, 陈铭明. 考虑能源效率的综合能源系统多目标优化调度[J]. 电力系统及其自动化学报, 2022, 34(2): 130-136.
SU H L, YANG S H, CHEN M M. Multi-objective optimal scheduling of integrated energy system considering energy efficiency[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 130-136.
[13] 郑亚锋, 魏振华, 高宇峰, 等. 多能流系统经济-节能多目标最优运行[J]. 电力系统及其自动化学报, 2020, 32(9): 77-85.
ZHENG Y F, WEI Z H, GAO Y F, et al. Multi-objective optimal operation of multi-energy carrier system considering economy and energy conservation[J]. Proceedings of the CSU-EPSA, 2020, 32(9): 77-85.
[14] 胡枭, 尚策, 陈东文, 等. 考虑能量品质的区域综合能源系统多目标规划方法[J]. 电力系统自动化, 2019, 43(19): 22-31, 139.
HU X, SHANG C, CHEN D W, et al. Multi-objective planning method for regional integrated energy systems considering energy quality[J]. Automation of electric power systems, 2019, 43(19): 22-31, 139.
[15] 刘帅东, 韩松, 荣娜, 等. 计及㶲效率的电-气-热综合能源系统多目标优化调度方法[J]. 电网技术, 2024, 48(7): 2715-2722.
LIU S D, HAN S, RONG N, et al. A multi-objective optimal scheduling method for integrated electricity-gas-heat energy system taking into account the exergy efficiency of the integrated energy system[J]. Power system technology, 2024, 48(7): 2715-2722.
[16] 黄宇, 王宇涛, 李淑琴, 等. 计及㶲分析的综合能源系统多目标优化调度[J]. 太阳能学报, 2022, 43(7): 30-38.
HUANG Y, WANG Y T, LI S Q, et al. Multi-objective optimal scheduling of integrated energy system with thermodynamic exergy analysis method[J]. Acta energiae solaris sinica, 2022, 43(7): 30-38.
[17] 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603-1613, 1857.
SUI Q, MA X, WEI F R, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613, 1857.
[18] 谢蒙飞, 马高权, 刘斌, 等. 基于信息差距决策理论的虚拟电厂报价策略[J]. 中国电力, 2024, 57(1): 40-50.
XIE M F, MA G Q, LIU B, et al. Virtual power plant quotation strategy based on information gap decision theory[J]. Electric power, 2024, 57(1): 40-50.
[19] 王俐英, 董厚琦, 宋美琴, 等. 计及需求响应不确定性的综合能源系统多目标优化调度管理[J]. 运筹与管理, 2022, 31(6): 32-39.
WANG L Y, DONG H Q, SONG M Q, et al. Multi-objective optimal dispatch management of integrated energy system considering uncertainty of demand response[J]. Operations research and management science, 2022, 31(6): 32-39.
[20] 朱西平, 江强, 刘明航, 等. 计及源-荷不确定性的综合能源系统两阶段优化调度[J]. 电力自动化设备, 2023, 43(8): 9-16, 32.
ZHU X P, JIANG Q, LIU M H, et al. Two-stage optimal scheduling of integrated energy system considering source-load uncertainty[J]. Electric power automation equipment, 2023, 43(8): 9-16, 32.
[21] 杨晓辉, 邓福伟, 张钟炼, 等. 基于自适应ε约束法考虑OLTC模糊控制的低碳配电网双层规划[J]. 电力系统保护与控制, 2023, 51(13): 1-11.
YANG X H, DENG F W, ZHANG Z L, et al. Bi-level planning for low-carbon distribution networks based on an adaptive ε-constraint method considering OLTC fuzzy control[J]. Power system protection and control, 2023, 51(13): 1-11.
[22] BUDAK Y, DEVRIM Y.Investigation of micro-combined heat and power application of PEM fuel cell systems[J]. Energy conversion and management, 2018, 160: 486-494.
[23] ZHU X Y, GUI P P, ZHANG X X, et al.Multi-objective optimization of a hybrid energy system integrated with solar-wind-PEMFC and energy storage[J]. Journal of energy storage, 2023, 72: 108562.
[24] YU S, FAN Y, SHI Z R, et al.Hydrogen-based combined heat and power systems: a review of technologies and challenges[J]. International journal of hydrogen energy, 2023, 48(89): 34906-34929.
[25] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Y F, CHEN L J, ZHENG T W, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric power automation equipment, 2021, 41(9): 31-38.
[26] 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51(12): 122-132.
BI R, WANG X G, YUAN H K, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power system protection and control, 2023, 51(12): 122-132.
[27] LIU L T, ZHAI R R, HU Y D.Multi-objective optimization with advanced exergy analysis of a wind-solar-hydrogen multi-energy supply system[J]. Applied energy, 2023, 348: 121512.
[28] KHOSRAVI A, KOURY R N N, MACHADO L, et al. Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system[J]. Energy, 2018, 148: 1087-1102.
[29] 王伟韬, 王旭, 蒋传文, 等. 考虑夏普比率的虚拟电厂日前投标策略[J]. 电网技术, 2023, 47(4): 1512-1523.
WANG W T, WANG X, JIANG C W, et al. Day ahead bidding strategy for virtual power plants considering Sharpe ratio[J]. Power system technology, 2023, 47(4): 1512-1523.
[30] 夏添, 沈欣炜, 尚宇炜. 基于混合整数规划的配电网检修多目标优化决策及其灵敏度分析[J]. 电网技术, 2024, 48(11): 4680-4689.
XIA T, SHEN X W, SHANG Y W. Power distribution system multi-objective maintenance scheduling based on mixed-integer programming and its sensitivity analysis[J]. Power system technology, 2024, 48(11): 4680-4689.
[31] 兰征, 郭凯涛, 尹锐, 等. 基于组合赋权和改进灰色关联的配网运行水平评估方法[J]. 湖南电力, 2023, 43(3): 70-76.
LAN Z, GUO K T, YIN R, et al. Evaluation method of distribution network operation level based on combination weighting and improved grey correlation[J]. Hunan electric power, 2023, 43(3): 70-76.
[32] 李超然, 潘鹏程, 杨伟荣, 等. 基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测[J]. 太阳能学报, 2024, 45(5): 508-516.
LI C R, PAN P C, YANG W R, et al. Research on PV system power prediction based on improved similar day and HBA-BiLSTM-KELM neural network[J]. Acta energiae solaris sinica, 2024, 45(5): 508-516.
[33] 蒋晨, 缪书唯. 基于TOPSIS法的风速概率分布评价方法[J]. 太阳能学报, 2023, 44(8): 499-508.
JIANG C, MIAO S W. Evaluation method for wind speed probability distribution based on TOPSIS method[J]. Acta energiae solaris sinica, 2023, 44(8): 499-508.
[34] 韩莹, 于三川, 李荦一, 等. 计及阶梯式碳交易的风光氢储微电网低碳经济配置方法[J]. 高电压技术, 2022, 48(7): 2523-2533.
HAN Y, YU S C, LI L Y, et al. Low-carbon and economic configuration method for solar hydrogen storage microgrid including stepped carbon trading[J]. High voltage engineering, 2022, 48(7): 2523-2533.
[35] 陈杨, 陈健, 张文, 等. 考虑电解槽和蓄电池寿命衰减特性的分布式电热氢系统优化调度策略[J]. 电力自动化设备, 2023, 43(12): 135-142.
CHEN Y, CHEN J, ZHANG W, et al. Optimal scheduling strategy of distributed electric-thermo-hydrogen system considering lifetime decay characteristics of electrolytic cell and battery[J]. Electric power automation equipment, 2023, 43(12): 135-142.
[36] 伍峻杭, 刘继春, 吴沂洋. 偏远地区能源自洽系统源储容量协同配置方法[J]. 电网技术, 2024, 48(5): 2031-2042.
WU J H, LIU J C, WU Y Y. Coordinated capacity configuration method of source and storage for energy self-sufficient system in remote areas[J]. Power system technology, 2024, 48(5): 2031-2042.
[37] 崔杨, 郭福音, 付小标, 等. 供用能转换促进风电消纳的综合能源系统源荷协调优化调度[J]. 电网技术, 2022, 46(4): 1437-1447.
CUI Y, GUO F Y, FU X B, et al. Source-load coordinated optimal dispatch of integrated energy system based on conversion of energy supply and use to promote wind power accommodation[J]. Power system technology, 2022, 46(4): 1437-1447.
PDF(1370 KB)

Accesses

Citation

Detail

Sections
Recommended

/