TWO-LAYER OPTIMIZATION SCHEDULING STRATEGY FOR DISTRIBUTED PHOTOVOLTAIC DISTRIBUTION NETWORKS WITH HIGH PROPORTION BASED ON C&CG ALGORITHM

Qiu Guihua, Ou Weichao, Nie Jiarong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 555-563.

PDF(1147 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1147 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 555-563. DOI: 10.19912/j.0254-0096.tynxb.2024-0861

TWO-LAYER OPTIMIZATION SCHEDULING STRATEGY FOR DISTRIBUTED PHOTOVOLTAIC DISTRIBUTION NETWORKS WITH HIGH PROPORTION BASED ON C&CG ALGORITHM

  • Qiu Guihua, Ou Weichao, Nie Jiarong
Author information +
History +

Abstract

This paper proposes a two-layer optimization scheduling strategy for distribution networks with a high proportion of distributed PV systems based on the C&CG algorithm. Firstly, a two-layer optimization scheduling model for distribution networks is established. The upper-layer model multi-dimensional voltage deviation levels and static voltage stability, with the objectives of minimizing distribution network losses and optimizing multi-dimensional power quality. The lower-layer model considers energy storage devices, strategies such as demand response participation in scheduling, with the objective of minimizing the overall operational expenses of the distribution network. The adaptive ε-constraint method combined with multi-objective particle swarm optimization algorithm is employed to obtain a uniformly distributed Pareto frontier, and the TOPSIS decision-making method is used to select the optimal solution. Finally, the C&CG algorithm is used to iteratively solve the two-layer model. The proposed strategy is validated through improved IEEE 33-node system example, demonstrating that it can reduce network losses, increase the consumption rate of renewable energy sources, and decrease the comprehensive operating costs of distribution networks while ensuring the optimal power quality of the distribution network.

Key words

distribution network / distributed photovoltaic / power quality / economic scheduling / adaptive ε-constraint method

Cite this article

Download Citations
Qiu Guihua, Ou Weichao, Nie Jiarong. TWO-LAYER OPTIMIZATION SCHEDULING STRATEGY FOR DISTRIBUTED PHOTOVOLTAIC DISTRIBUTION NETWORKS WITH HIGH PROPORTION BASED ON C&CG ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 555-563 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0861

References

[1] 邵晨旭, 汤奕. 计及电压越限风险的含分布式光伏配电网三相载荷不平衡多目标优化方法[J]. 太阳能学报, 2023, 44(12): 53-64.
SHAO C X, TANG Y. Imbalance multi-objective optimization method of three-phase laod for distribued photovoltaic power distribution net work considering risk of voltage overrun[J]. Acta energiae solaris sinica, 2023, 44(12): 53-64.
[2] 路怡, 江道灼, 梁一桥, 等. 一种抑制含光伏电源配电网电压越限的方法[J]. 电力建设, 2020, 41(11): 87-93.
LU Y, JIANG D Z, LIANG Y Q, et al. A method for suppressing voltage beyond limits in distribution network with photovoltaic power sources[J]. Electric power construction, 2020, 41(11): 87-93.
[3] 许晓艳, 黄越辉, 刘纯, 等. 分布式光伏发电对配电网电压的影响及电压越限的解决方案[J]. 电网技术, 2010, 34(10): 140-146.
XU X Y, HUANG Y H, LIU C, et al. Influence of distributed photovoltaic generation on voltage in distribution network and solution of voltage beyond limits[J]. Power system technology, 2010, 34(10): 140-146.
[4] 刘蕊, 吴奎华, 冯亮, 等. 含高渗透率分布式光伏的主动配电网电压分区协调优化控制[J]. 太阳能学报, 2022, 43(2): 189-197.
LIU R, WU K H, FENG L, et al. Voltage partition coordinated optimization control of active distribution network of high penetration distributed PVs[J]. Acta energiae solaris sinica, 2022, 43(2): 189-197.
[5] 李克强, 韩学山, 李华东, 等. 配网中光伏逆变器最优潮流追踪的分布式算法[J]. 中国电机工程学报, 2019, 39(3): 711-720, 950.
LI K Q, HAN X S, LI H D, et al. Distributed algorithm for optimal power flow pursuit by photovoltaic inverters in distribution systems[J]. Proceedings of the CSEE, 2019, 39(3): 711-720, 950.
[6] 郑能, 丁晓群, 郑程拓, 等. 含高比例光伏的配电网有功—无功功率多目标协调优化[J]. 电力系统自动化, 2018, 42(6): 33-39, 91.
ZHENG N, DING X Q, ZHENG C T, et al. Multi-objective coordinated optimization of active and reactive power for distribution network integrated with high proportion of photovoltaic generation[J]. Automation of electric power systems, 2018, 42(6): 33-39, 91.
[7] 蔡永翔, 唐巍, 张博, 等. 适应高比例户用光伏的中低压配电网集中-分布式协调控制[J]. 中国电机工程学报, 2020, 40(15): 4843-4854.
CAI Y X, TANG W, ZHANG B, et al. Centralized-distributed multi-objective coordinated control for MV and LV distribution networks adapting to high-proportion residential PV units[J]. Proceedings of the CSEE, 2020, 40(15): 4843-4854.
[8] SU X J, MASOUM M A S, WOLFS P J. Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks[J]. IEEE transactions on sustainable energy, 2014, 5(3): 967-977.
[9] 陈家超, 李钦豪, 唐渊, 等. 考虑光伏选相投切的低压配电网三相平衡优化[J]. 电力自动化设备, 2022, 42(4): 71-78.
CHEN J C, LI Q H, TANG Y, et al. Three-phase balance optimization of low-voltage distribution network considering photovoltaic phase selection and switching[J]. Electric power automation equipment, 2022, 42(4): 71-78.
[10] MOLINA-MARTIN F, MONTOYA O D, GRISALES-NOREÑA L F, et al. Simultaneous minimization of energy losses and greenhouse gas emissions in AC distribution networks using BESS[J]. Electronics, 2021, 10(9): 1002.
[11] YUAN H Z, YE H H, CHEN Y T, et al.Research on the optimal configuration of photovoltaic and energy storage in rural microgrid[J]. Energy reports, 2022, 8: 1285-1293.
[12] GIL GONZALEZ W J, BOCANEGRA S Y, SERRA F M, et al. Control methods for single-phase voltage supply with VSCs to feed nonlinear loads in rural areas[J]. Transactions on energy systems and engineering applications, 2020, 1(1): 33-47.
[13] 薛金花, 叶季蕾, 陶琼, 等. 电力储能技术的适用性评价模型与方法研究[J]. 高电压技术, 2018, 44(7): 2239-2246.
XUE J H, YE J L, TAO Q, et al. Feasibility evaluation model and method of energy storage technologies in power system[J]. High voltage engineering, 2018, 44(7): 2239-2246.
[14] 杨锡运, 董德华, 李相俊, 等. 商业园区储能系统削峰填谷的有功功率协调控制策略[J]. 电网技术, 2018, 42(8): 2551-2561.
YANG X Y, DONG D H, LI X J, et al. Active power coordinated control strategy of peak load shifting for energy storage system in business park[J]. Power system technology, 2018, 42(8): 2551-2561.
[15] 王海云, 于希娟, 张雨璇, 等. 大型城市电网下分布式光伏承载力评估分析[J]. 太阳能学报, 2023, 44(6): 260-264.
WANG H Y, YU X J, ZHANG Y X, et al. Evaluation and analysis of distributed photovoltaic carrying capacity in large urban power grid[J]. Acta energiae solaris sinica, 2023, 44(6): 260-264.
[16] 姜恩宇, 陈周, 史雷敏, 等. 计及多重不确定性与综合贡献率的多微网合作运行策略[J]. 太阳能学报, 2023, 44(10): 80-89.
JIANG E Y, CHEN Z, SHI L M, et al. Cooperative operation strategy of multi-microgrids based on multiple uncertainties and comprehen sive contribution rate[J]. Acta energiae solaris sinica, 2023, 44(10): 80-89.
[17] 陈锐智, 李析鸿, 陈思羽, 等. 基于EPSILON约束法的配电自动化设备多目标优化布点模型[J]. 电力系统保护与控制, 2021, 49(24): 51-58.
CHEN R Z, LI X H, CHEN S Y, et al. Multi-objective layout optimization model of distribution automation equipment based on the EPSILON constraint method[J]. Power system protection and control, 2021, 49(24): 51-58.
[18] YANG X H, LENG Z Y, XU S P, et al.Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε[J]. Renewable energy, 2021, 172: 408-423.
PDF(1147 KB)

Accesses

Citation

Detail

Sections
Recommended

/