STUDY ON FAILURE MECHANISM OF BOLTED CONNECTION CONFIGURATION OF WIND TURBINE SEGMENTED BLADES

Xiang Jiahao, Shi Kezhong, Wu Honghui, Song Juanjuan, Li Qing'an, Zhong Xiaohui

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 152-161.

PDF(1888 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1888 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 152-161. DOI: 10.19912/j.0254-0096.tynxb.2024-0865

STUDY ON FAILURE MECHANISM OF BOLTED CONNECTION CONFIGURATION OF WIND TURBINE SEGMENTED BLADES

  • Xiang Jiahao1~4, Shi Kezhong1~4, Wu Honghui1~4, Song Juanjuan1~4, Li Qing'an1~4, Zhong Xiaohui1~4
Author information +
History +

Abstract

To obtain the failure mechanism of the segmented blade bolt connection, failure models of various composite materials are first established and compared through experiments and simulations to obtain the most suitable failure theory. Then, on this basis, the bolt connection structure model is established and numerical simulation is carried out. The results show that: Compared with the Hashin and Tsai-Wu failure criteria, the LaRC failure criterion is more applicable to characterizing composite materials failure in bolt connections of segmented blade bolt connections; During the process of bolt loading, the composite material is more prone to failure, but it does not lead to the failure of the overall structure. The bolt failure that occurs in the subsequent process is the main cause of the failure of the connection structure.

Key words

wind turbine / segmented blades / composite material / bolt connection / failure mechanism / finite element simulation

Cite this article

Download Citations
Xiang Jiahao, Shi Kezhong, Wu Honghui, Song Juanjuan, Li Qing'an, Zhong Xiaohui. STUDY ON FAILURE MECHANISM OF BOLTED CONNECTION CONFIGURATION OF WIND TURBINE SEGMENTED BLADES[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 152-161 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0865

References

[1] HALD H, KENSCHE W C.Development and tests of a light-weight GRP rotor blade for the DFVLR 100 kW WEC[C]//Proceeding of Wind Power 85.
San Francisco, CA, USA, 1985.
[2] 欧洲海上风电. GE两段式碳纤维叶片,一年内第三次断裂![EB/OL]. (2022-07-25). www.shangyexinzhi.com.
European offshore wind power. GE's two-stage carbon fiber blade broke for the third time within a year! [EB/OL]. (2022-07-25). www.shangyexinzhi.com.
[3] VIONIS P, LEKOU D, GONZALEZ F, et al.Development of a MW scale wind turbine for high wind complex terrain sites[C]//the MEGAWIND Project: Proceedings of the European Wind Energy Conference. Athens, Greece, 2006.
[4] SAENZ E, NUIN I, MONTEJO R, et al.Development and validation of a new joint system for sectional blades[J]. Wind energy, 2015, 18(3): 419-428.
[5] PEDERSEN B H,AROCENA D L R I, SOLA R R, et al. US. Patent 20090116962:Sensorised blade joint[P]. 2009.
[6] 喻光安, 秦志文, 荣晓敏, 等. 缺陷对风电叶片螺栓连接性能影响研究[J]. 太阳能学报, 2019, 40(11): 3244-3249.
YU G A, QIN Z W, RONG X M, et al.Effects of defects on connection performance for wind turbine blades[J]. Acta energiae solaris sinica, 2019, 40(11): 3244-3249.
[7] 游少雄, 羊森林, 钟贤和. 复合材料风电叶片分段组装技术发展现状[J]. 江西建材, 2019(9): 10-12, 14.
YOU S X, YANG S L, ZHONG X H.Development status of segmented assembly technology of composite wind power blade[J]. Jiangxi building materials, 2019(9): 10-12, 14.
[8] PEETERS M, SANTO G, DEGROOTE J, et al.The concept of segmented wind turbine blades: a review[J]. Energies, 2017, 10(8): 1112.
[9] MURDY P, HUGHES S, MILLER D A, et al.Static and fatigue characterization of large composite T-bolt connections in marine hygrothermal environments[J]. Journal of marine science and engineering, 2023, 11(12): 2309.
[10] 秦志文, 廖猜猜, 荣晓敏, 等. 分段连接对风电叶片与机组性能的影响[J]. 太阳能学报, 2021, 42(6): 349-355.
QIN Z W, LIAO C C, RONG X M, et al.Effects of segment connection on blade and wind turbine performance[J]. Acta energiae solaris sinica, 2021, 42(6): 349-355.
[11] 郭宏超, 高翔, 张思嘉, 等. 风力机塔筒双盖板穿芯螺栓连接疲劳性能研究[J]. 太阳能学报, 2023, 44(9): 377-383.
GUO H C, GAO X, ZHANG S J, et al.Study on fatigue properties of double-plate through-core bolted joints in wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(9): 377-383.
[12] 付之炜. 螺栓有限元模型参数化建模及多螺栓排布下松动影响因素研究[D]. 重庆: 重庆理工大学, 2023.
FU Z W.Parametric modeling of bolt finite element model and research on influencing factors of loosening under multi-bolt arrangement[D]. Chongqing: Chongqing University of Technology, 2023.
[13] ANTWI E K, LIU K, WANG H.A review on ductile mode cutting of brittle materials[J]. Frontiers of mechanical engineering, 2018, 13(2): 251-263.
[14] 黄华, 王永和, 魏泰, 等. 摩擦和常温蠕变对风电螺栓预紧力松弛的敏感性分析[J]. 太阳能学报, 2023, 44(1): 289-296.
HUANG H, WANG Y H, WEI T, et al.Sensitivity analysis of friction and room temperature creep on preload relaxation of wind turbine bolt[J]. Acta energiae solaris sinica, 2023, 44(1): 289-296.
[15] HASHIN Z.Failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(2): 329-334.
[16] PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites science and technology, 2002, 62(12/13): 1633-1662.
[17] TSAI S W.A survey of macroscopic failure criteria for composite materials[J]. Journal of reinforced plastics and composites, 1984, 3(1): 40-62.
[18] RODNEY H.A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the royal society of London series a mathematical and physical sciences, 1948, 193(1033): 281-297.
[19] PINHO S T, DÁVILA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R].NASA/TM-2005-213530, 2005.
[20] PINHO S T, DARVIZEH R, ROBINSON P, et al.Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of composite materials, 2012, 46(19/20): 2313-2341.
[21] SANDHU R S.Nonlinear behavior of unidirectional and angle ply laminates[J]. Journal of aircraft, 1976, 13(2): 104-111.
[22] CHANG F K, CHANG K Y.A progressive damage model for laminated composites containing stress concentrations[J]. Journal of composite materials, 1987, 21(9): 834-855.
[23] ABU-FARSAKH G A, ODEH I N. A new damage-based failure criterion for nonlinear behavior of fibrous composite materials[J]. International journal of damage mechanics, 2023, 32(7): 940-961.
[24] CAMUS G.Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2-D SiC/SiC[J]. International journal of solids and structures, 2000, 37(6): 919-942.
[25] 贾斐, 杨成鹏, 宋远翔. 各向异性复合材料强度失效判据综述[J]. 力学学报, 2024, 56(4): 1006-1024.
JIA F, YANG C P, SONG Y X.Review on strength failure criteria of anisotropic composite materials[J]. Chinese journal of theoretical and applied mechanics, 2024, 56(4): 1006-1024.
[26] 范沁红, 高宏伟, 楚志兵. 金属材料损伤理论模型的研究综述[J]. 太原理工大学学报, 2023, 54(2): 225-234.
FAN Q H, GAO H W, CHU Z B.Research review on the damage theoretical model of metal materials[J]. Journal of Taiyuan University of Technology, 2023, 54(2): 225-234.
[27] LEE H G, KANG M, PARK J.Fatigue failure of a composite wind turbine blade at its root end[J]. Composite structures, 2015, 133: 878-885.
[28] BENDER J J, HALLETT S R, LINDGAARD E.Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength[J]. Composite structures, 2019, 218: 39-49.
PDF(1888 KB)

Accesses

Citation

Detail

Sections
Recommended

/