RESEARCH PROGRESS ON KEY MECHANISMS OF BIOMASS GASIFICATION BASED ON DENSITY FUNCTIONAL THEORY SIMULATION

Yan Beibei, Yu Tianxiao, Li Jian, Wang Ran, Chen Guanyi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 217-228.

PDF(1090 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1090 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 217-228. DOI: 10.19912/j.0254-0096.tynxb.2024-0871

RESEARCH PROGRESS ON KEY MECHANISMS OF BIOMASS GASIFICATION BASED ON DENSITY FUNCTIONAL THEORY SIMULATION

  • Yan Beibei1, Yu Tianxiao1, Li Jian1, Wang Ran2, Chen Guanyi3
Author information +
History +

Abstract

The principles and application methods of density functional theory (DFT) simulation are reviewed, the application process and analytical methods of DFT simulation are summarized in terms of pyrolysis gasification mechanism and tar removal of typical biomass components, and an outlook on the future development of DFT simulation in the field of biomass gasification is presented.

Key words

density functional theory / biomass / gasification / biomass component / tar / reaction mechanism

Cite this article

Download Citations
Yan Beibei, Yu Tianxiao, Li Jian, Wang Ran, Chen Guanyi. RESEARCH PROGRESS ON KEY MECHANISMS OF BIOMASS GASIFICATION BASED ON DENSITY FUNCTIONAL THEORY SIMULATION[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 217-228 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0871

References

[1] KAN T, STREZOV V, EVANS T J.Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renewable and sustainable energy reviews, 2016, 57: 1126-1140.
[2] 潘小天, 仲兆平, 汪维, 等. 不同生物质原料的气化合成制航煤的环境影响评价[J]. 太阳能学报, 2023, 44(5): 10-16.
PAN X T, ZHONG Z P, WANG W, et al.Environmental impact assessment of gasification synthesis of different biomass for production of jet fuel[J]. Acta energiae solaris sinica, 2023, 44(5): 10-16.
[3] OH G, RA H W, YOON S M, et al.Syngas production through gasification of coal water mixture and power generation on dual-fuel diesel engine[J]. Journal of the energy institute, 2019, 92(2): 265-274.
[4] ALI F, DAWOOD A, HUSSAIN A, et al.Fueling the future: biomass applications for green and sustainable energy[J]. Discover sustainability, 2024, 5(1): 156.
[5] 徐永霞. 低碳经济背景下的生物质能源应用技术[J]. 化学工程与装备, 2023(7): 217-218, 238.
XU Y X.Application technology of biomass energy under the background of low-carbon economy[J]. Chemical engineering & equipment, 2023(7): 217-218, 238.
[6] FUKUTOME A, KAWAMOTO H, SAKA S.Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as intermediate[J]. ChemSusChem, 2015, 8(13): 2240-2249.
[7] ZHAO S L, LIU M, ZHAO L, et al.Influence of interactions among three biomass components on the pyrolysis behavior[J]. Industrial & engineering chemistry research, 2018, 57(15): 5241-5249.
[8] 米铁, 姜晓敏, 彭乔, 等. 原位催化裂解对中药废渣气化特性的影响[J]. 太阳能学报, 2017, 38(4): 879-884.
MI T, JIANG X M, PENG Q, et al.Effect of in situ catalytic cracking on gasification performance of traditional Chinese herbal medicine wastes[J]. Acta energiae solaris sinica, 2017, 38(4): 879-884.
[9] TURSUN Y, XU S P, ABULIKEMU A, et al.Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine[J]. Bioresource technology, 2019, 272: 241-248.
[10] 徐彬, 李嘉卿, 谢建军, 等. 等离子体耦合催化焦油脱除同时生物质燃气甲烷化性能研究[J]. 燃料化学学报, 2021, 49(7): 967-977.
XU B, LI J Q, XIE J J, et al.Performance study on simultaneous tar removal and bio-syngas methanation by combining catalysis with nonthermal plasma[J]. Journal of fuel chemistry and technology, 2021, 49(7): 967-977.
[11] HU M, CUI B H, XIAO B, et al.Insight into the ex situ catalytic pyrolysis of biomass over char supported metals catalyst: syngas production and tar decomposition[J]. Nanomaterials, 2020, 10(7): 1397.
[12] LIU X Y, YI C X, CHEN L, et al.Synergy of steam reforming and K2CO3 modification on wood biomass pyrolysis[J]. Cellulose, 2019, 26(10): 6049-6060.
[13] TANG F, JIN Y Q, CHI Y, et al.Effect of steam on the homogeneous conversion of tar contained from the co-pyrolysis of biomass and plastics[J]. Environmental science and pollution research, 2021, 28(48): 68909-68919.
[14] REN J, LIU Y L, ZHAO X Y, et al.Biomass thermochemical conversion: a review on tar elimination from biomass catalytic gasification[J]. Journal of the energy institute, 2020, 93(3): 1083-1098.
[15] 卢岩, 李学琴, 李艳玲, 等. 生物质气化副产有机污染物脱除及防控技术现状[J]. 太阳能学报, 2023, 44(11): 399-405.
LU Y, LI X Q, LI Y L, et al.Current status of removal and control technologies for organic pollutants from biomass gasification by-products[J]. Acta energiae solaris sinica, 2023, 44(11): 399-405.
[16] 涂宁宇, 刘洋. DFT应用于典型有机污染物的环境光化学行为研究进展[C]//2017中国环境科学学会科学与技术年会论文集(第四卷). 厦门, 中国, 2017: 448-452.
TU N Y, LIU Y.Progress in the application of DFT to the study of environmental photochemical behaviour of typical organic pollutants[C]//Proceedings of the 2017 Annual Conference of the Chinese Society for Environmental Sciences (Volume 4). Xiamen, China, 2017: 448-452.
[17] 苑世领, 张恒, 张冬菊. 分子模拟:理论与实验[M]. 北京: 化学工业出版社, 2016: 176.
YUAN S L, ZHANG H, ZHANG D J.Molecular simulation[M]. Beijing: Chemical Industry Press, 2016: 176.
[18] 徐祥, 宋玲玲, 赵慧, 等. 第一性原理计算在铜合金研究中的应用进展[J]. 材料热处理学报, 2019, 40(3): 1-11.
XU X, SONG L L, ZHAO H, et al.Application progress of first-principles calculation in the study of copper alloys[J]. Transactions of materials and heat treatment, 2019, 40(3): 1-11.
[19] JIAO W H, WANG Z Q, JIAO W Y, et al.Influencing factors and reaction mechanism for catalytic CO2 gasification of sawdust char using K-modified transition metal composite catalysts: experimental and DFT studies[J]. Energy conversion and management, 2020, 208: 112522.
[20] DING W J, ZHOU W H, ZHANG X D, et al.The application of DFT in catalysis and adsorption reaction system[J]. Energy procedia, 2018, 152: 997-1002.
[21] XING H R, HU P, LI S L, et al.Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review[J]. Journal of materials science & technology, 2021, 62: 180-194.
[22] 洪立水, 黄金, 胡艳鑫, 等. 基于太阳能储能材料的偶氮苯化合物性能研究[J]. 太阳能学报, 2017, 38(7): 1761-1766.
HONG L S, HUANG J, HU Y X, et al.Performance study of azobenzene compounds based on material for solar energy storage[J]. Acta energiae solaris sinica, 2017, 38(7): 1761-1766.
[23] 田红, 何正文, 刘亮, 等. 基于量子化学理论的苯丙氨酸热解过程中NOx前驱体生成机理研究[J]. 太阳能学报, 2021, 42(10): 317-323.
TIAN H, HE Z W, LIU L, et al.Study on formation mechanism of NOx precursor in pyrolysis process of phenylalanine based on quantum chemistry theory[J]. Acta energiae solaris sinica, 2021, 42(10): 317-323.
[24] BECKE A D. Perspective: fifty years of density-functional theory in chemical physics[J]. The journal of chemical physics, 2014, 140(18): 18A301.
[25] 朱立砚, 张婷婷. 低维纳米材料物性的密度泛函理论研究[M]. 苏州: 苏州大学出版社, 2020: 6-7.
ZHU L Y, ZHANG T T.Density functional theory study on physical properties of low-dimensional nanomaterials[M]. Suzhou: Soochow University Press, 2020: 6-7.
[26] 刘华忠. 第一性原理计算: TiO2表面[M]. 西安: 西安交通大学出版社, 2017: 31-32.
LIU H Z.A first-principles computation[M]. Xi'an: Xi'an Jiaotong University Press, 2017: 31-32.
[27] LATTER R.Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential[J]. Physical review, 1955, 99(2): 510-519.
[28] KOHN W, SHAM L J.Self-consistent equations including exchange and correlation effects[J]. Physical review, 1965, 140(4A): A1133-A1138.
[29] JAFAROVA V N, ORUDZHEV G S.Structural and electronic properties of ZnO: a first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods[J]. Solid state communications, 2021, 325: 114166.
[30] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865-3868.
[31] BECKE A D.Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical review A, general physics, 1988, 38(6): 3098-3100.
[32] LEE C, YANG W, PARR R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical review B, 1988, 37(2): 785-789.
[33] 张英, 王明伟, 高朋, 等. 基于DFT+U理论的SF6分子与TiO2(001)表面吸附研究[J]. 高电压技术, 2024, 50(9): 4232-4239.
ZHANG Y, WANG M W, GAO P, et al.Study on the adsorption of SF6 molecules on the surface of TiO2(001) based on DFT+U theory[J]. High voltage engineering, 2024, 50(9): 4232-4239.
[34] ADAMO C, BARONE V.Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. The journal of chemical physics, 1999, 110(13): 6158-6170.
[35] HEYD J, SCUSERIA G E, ERNZERHOF M.Hybrid functionals based on a screened coulomb potential[J]. The journal of chemical physics, 2003, 118(18): 8207-8215.
[36] HEYD J, SCUSERIA G E, ERNZERHOF M.Hybrid functionals based on a screened coulomb potential[J]. The journal of chemical physics, 2003, 118(18): 8207-8215.
[37] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al.Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The journal of physical chemistry, 1994, 98(45): 11623-11627.
[38] LU Q, ZHANG Y, DONG C Q, et al.The mechanism for the formation of levoglucosenone during pyrolysis of β-d-glucopyranose and cellobiose: a density functional theory study[J]. Journal of analytical and applied pyrolysis, 2014, 110: 34-43.
[39] 黄金保, 刘朝, 曾桂生, 等. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7): 807-815.
HUANG J B, LIU C, ZENG G S, et al.A density functional theory study on the mechanism of levoglucosan pyrolysis[J]. Journal of fuel chemistry and technology, 2012, 40(7): 807-815.
[40] 黄金保, 刘朝, 任丽蓉, 等. 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报, 2013, 41(6): 657-666.
HUANG J B, LIU C, REN L R, et al.Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. Journal of fuel chemistry and technology, 2013, 41(6): 657-666.
[41] YAN J C, SUN R, SHEN L H, et al.Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier[J]. Chemical engineering journal, 2020, 387: 124107.
[42] TRINH Q T, NGUYEN A V, HUYNH D C, et al.Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound[J]. Catalysis science & technology, 2016, 6(15): 5871-5883.
[43] KNUTSSON P, CANTATORE V, SEEMANN M, et al.Role of potassium in the enhancement of the catalytic activity of calcium oxide towards tar reduction[J]. Applied catalysis B: environmental, 2018, 229: 88-95.
[44] ZHAO B F, WANG J W, ZHU D, et al.Adsorption characteristics of gas molecules (H2O, CO2, CO, CH4, and H2) on CaO-based catalysts during biomass thermal conversion with in situ CO2 capture[J]. Catalysts, 2019, 9(9): 757.
[45] XIAO L F, HU S, HAN H D, et al.An insight into the OPAHs and SPAHs formation mechanisms during alkaline lignin pyrolysis at different temperatures[J]. Journal of analytical and applied pyrolysis, 2021, 156: 105104.
[46] ZHANG M H, GENG Z F, YU Y Z.Density functional theory(DFT) study on the dehydration of cellulose[J]. Energy & fuels, 2011, 25(6): 2664-2670.
[47] XIAO L F, HU S, SONG Y, et al.The formation mechanism for OPAHs during the cellulose thermal conversion in inert atmosphere at different temperatures based on ESI(-) FT-ICR MS measurement and density functional theory (DFT)[J]. Fuel, 2019, 239: 320-329.
[48] DU Z Y, ZHANG Z H, XU C, et al.Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS sustainable chemistry & engineering, 2019, 7(3): 3111-3119.
[49] MADADI M, ABBAS A.Lignin degradation by fungal pretreatment: a review[J]. Journal of plant pathology & microbiology, 2017, 8(2): 1000398.
[50] YANG X X, FU Z W, HAN D D, et al.Unveiling the pyrolysis mechanisms of cellulose: experimental and theoretical studies[J]. Renewable energy, 2020, 147: 1120-1130.
[51] WANG Q, SONG H, PAN S, et al.Initial pyrolysis mechanism and product formation of cellulose: an experimental and density functional theory(DFT) study[J]. Scientific reports, 2020, 10: 3626.
[52] PADMANATHAN A M D, BECK S, ANSARI K B, et al. Impact of lignin-carbohydrate complex (LCC) linkages on cellulose pyrolysis chemistry[J]. Energy advances, 2024, 3(2): 515-528.
[53] DUAN J R, HU H W, JI J.Pyrolysis mechanism of β-d-glucopyranose as a model compound of cellulose: a joint experimental and theoretical investigation[J]. Energy, 2023, 282: 128245.
[54] LU Q, TIAN H Y, HU B, et al.Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. Journal of analytical and applied pyrolysis, 2016, 120: 15-26.
[55] HU B, LU Q, JIANG X Y, et al.Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of energy chemistry, 2018, 27(2): 486-501.
[56] FANG Y, LI J, CHEN Y Q, et al.Experiment and modeling study of glucose pyrolysis: formation of 3-hydroxy-γ-butyrolactone and 3-(2H)-furanone[J]. Energy & fuels, 2018, 32(9): 9519-9529.
[57] LU Q, HU B, ZHANG Z X, et al.Mechanism of cellulose fast pyrolysis: the role of characteristic chain ends and dehydrated units[J]. Combustion and flame, 2018, 198: 267-277.
[58] ZHANG Y Y, LIU C, CHEN X.Unveiling the initial pyrolytic mechanisms of cellulose by DFT study[J]. Journal of analytical and applied pyrolysis, 2015, 113: 621-629.
[59] ZHANG X L, YANG W H, BLASIAK W.Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis[J]. Journal of analytical and applied pyrolysis, 2012, 96: 110-119.
[60] HU B, LU Q, WU Y T, et al.Catalytic mechanism of sulfuric acid in cellulose pyrolysis: a combined experimental and computational investigation[J]. Journal of analytical and applied pyrolysis, 2018, 134: 183-194.
[61] HE B, YU Y, GONG X, et al.Mechanism of acid-catalyzed pyrolysis of levoglucosan: formation of anhydro-disaccharides[J]. Fuel, 2023, 345: 128242.
[62] CHENG X X, JIANG D, CAO B, et al.Study on ZSM-5 catalytic pyrolysis mechanism of cellulose based on the Py-GC/MS and the density functional theory[J]. Combustion and flame, 2022, 241: 112131.
[63] OSATIASHTIANI A, ZHANG J J, STEFANIDIS S D, et al.The mechanism for catalytic fast pyrolysis of levoglucosan, furfural and furan over HZSM-5: an experimental and theoretical investigation[J]. Fuel, 2022, 328: 125279.
[64] 樊荻, 解新安, 李璐, 等. β-O-4型木质素二聚体模型化合物热解机理及产物选择性理论[J]. 化工进展, 2017, 36(12): 4436-4444.
FAN D, XIE X A, LI L, et al.Theoretical study on pyrolysis and product selectivity of β-O-4 type lignin dimer model[J]. Chemical industry and engineering progress, 2017, 36(12): 4436-4444.
[65] 何正文, 田红, 黄章俊, 等. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
HE Z W, TIAN H, HUANG Z J, et al.Influence of pyrolysis temperature on the distribution of pyrolysis products of lignin dimer based on quantum chemistry theory[J]. Materials reports, 2020, 34(6): 6180-6185.
[66] YU H, WANG S Y, SUN Y, et al.Pyrolysis mechanism law of β-O-4 lignin dimer model compounds: a density functional theory study[J]. Industrial crops and products, 2022, 180: 114746.
[67] 楼波, 李森浩, 卢菘, 等. 紫丁香基木质素二聚体模化物热解的动力学机理[J]. 华南理工大学学报(自然科学版), 2023, 51(12): 107-117.
LOU B, LI S H, LU S, et al.Kinetic mechanism of pyrolysis of lilac lignin dimer memes[J]. Journal of South China University of Technology (natural science edition), 2023, 51(12): 107-117.
[68] 李文涛, 高丽娟, 周关正, 等. β-5型木质素二聚体热解机理模拟计算[J]. 能源环境保护, 2024, 38(2): 208-214.
LI W T, GAO L J, ZHOU G Z, et al.Computational study on pyrolysis mechanism of β-5 linked lignin dimers[J]. Energy environmental protection, 2024, 38(2): 208-214.
[69] HOUSTON R W, ELDER T J, ABDOULMOUMINE N H.Investigation into the pyrolysis bond dissociation enthalpies (BDEs) of a model lignin oligomer using density functional theory (DFT)[J]. Energy & fuels, 2022, 36(3): 1565-1573.
[70] 高丽娟, 李文涛, 韩晓峰, 等. 木糖热解过程中丙酮形成机理的理论研究[J]. 新能源进展, 2019, 7(5): 405-414.
GAO L J, LI W T, HAN X F, et al.A theoretical study on the formation mechanism of acetone in the process of xylose pyrolysis[J]. Advances in new and renewable energy, 2019, 7(5): 405-414.
[71] 吴隆琴, 黄金保, 潘贵英, 等. 阿拉伯呋喃糖热解机理的密度泛函理论研究[J]. 分子科学学报, 2018, 34(5): 409-417, 8.
WU L Q, HUNAG J B, PAN G Y, et al.A density functional theory study on the pyrolysis mechanism of Arabinofuranose[J]. Journal of molecular science, 2018, 34(5): 409-417, 8.
[72] LI Z Y, LIU C, XU X X, et al.A theoretical study on the mechanism of xylobiose during pyrolysis process[J]. Computational and theoretical chemistry, 2017, 1117: 130-140.
[73] RAKESH N, DASAPPA S.A critical assessment of tar generated during biomass gasification-Formation, evaluation, issues and mitigation strategies[J]. Renewable and sustainable energy reviews, 2018, 91: 1045-1064.
[74] GHADAMI YAZDI M, MOUD P H, MARKS K, et al.Naphthalene on Ni(111): experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. The journal of physical chemistry C, 2017, 121(40): 22199-22207.
[75] ZHU T T, CHEN Z Z, GONG H J, et al.Seeded-growth preparation of high-performance Ni/MgAl2O4 catalysts for tar steam reforming[J]. New journal of chemistry, 2020, 44(32): 13692-13700.
[76] WANG J W, ZHAO B F, ZHU D, et al.Mechanism on catalytic cracking tar with CaO-based catalysts for hydrogen-rich gas by DFT and experiments[J]. International journal of hydrogen energy, 2021, 46(9): 6522-6531.
[77] ZHOU F, PAN N Y, CHEN H Y, et al.Hydrogen production through steam reforming of toluene over Ce, Zr or Fe promoted Ni-Mg-Al hydrotalcite-derived catalysts at low temperature[J]. Energy conversion and management, 2019, 196: 677-687.
[78] WANG J W, ZHAO B F, LIU S X, et al.Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study[J]. Energy conversion and management, 2022, 254: 115246.
[79] JAMRÓZ P, KORDYLEWSKI W, WNUKOWSKI M. Microwave plasma application in decomposition and steam reforming of model tar compounds[J]. Fuel processing technology, 2018, 169: 1-14.
[80] FOURCAULT A, MARIAS F, MICHON U.Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch[J]. Biomass and bioenergy, 2010, 34(9): 1363-1374.
[81] LI X, WU C N, HAN J T.Quenching experiment study on thermal plasma pyrolysis process of coal tar[J]. Plasma chemistry and plasma processing, 2016, 36(3): 869-880.
[82] CHEN L, CHENG D G, CHEN F Q, et al.A density functional theory study on the conversion of polycyclic aromatic hydrocarbons in hydrogen plasma[J]. International journal of hydrogen energy, 2020, 45(1): 309-321.
[83] ZHU Z Z, GUO W Y, ZHANG Y, et al.Research progress on methane conversion coupling photocatalysis and thermocatalysis[J]. Carbon energy, 2021, 3(4): 519-540.
[84] YAN B B, YU T X, LI J, et al.The mechanism of photothermal catalytic reforming of biomass tar: an exploratory study based on density functional theory[J]. Fuel, 2024, 357: 129838.
PDF(1090 KB)

Accesses

Citation

Detail

Sections
Recommended

/