KEY TECHNOLOGY AND PROSPECT OF SUPPORTING STRUCTURES IN LH2 STORAGR TANKS

Qiu Yi'nan, Liu Luohan, Ma Xinglong, Xu Yuanyuan, Kang Huifang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 419-425.

PDF(1106 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1106 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 419-425. DOI: 10.19912/j.0254-0096.tynxb.2024-0880

KEY TECHNOLOGY AND PROSPECT OF SUPPORTING STRUCTURES IN LH2 STORAGR TANKS

  • Qiu Yi'nan1, Liu Luohan2, Ma Xinglong2, Xu Yuanyuan1, Kang Huifang2
Author information +
History +

Abstract

The types, materials, and applications of supporting structures for liquid hydrogen storage tanks are systematically reviewed and analyzed. The advantages and disadvantages of various struts are comprehensively evaluated, followed by a scenario-based analysis of the supporting structures used in liquid hydrogen storage tanks during the transportation of tank trucks, ships, aircraft, and rockets. Based on the current research status, the usage types of struts exhibit distinct scenario-specific characteristics, with rod supports being the most frequently selected structure. In terms of materials, composite materials demonstrate significant potential due to their excellent thermal insulation, anti-corrosion, and mechanical properties, and are currently in a phase of rapid development. Furthermore, as the application scenarios of LH2 storage tanks expand, thermal insulation is no longer the sole concern. Particularly in mobile storage tanks, the energy transfer resulting from vibration and shock, as well as its impact on structural strength, requires special attention.

Key words

LH2 storage tank / supportingstructures / vibrations / insulation performance / cryogenic propertyies

Cite this article

Download Citations
Qiu Yi'nan, Liu Luohan, Ma Xinglong, Xu Yuanyuan, Kang Huifang. KEY TECHNOLOGY AND PROSPECT OF SUPPORTING STRUCTURES IN LH2 STORAGR TANKS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 419-425 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0880

References

[1] 谢茂. 美国天然气产业发展的经验与启示[J]. 国际石油经济, 2015, 23(6): 30-36, 110.
XIE M.Experience and revelation of US's natural gas industry development[J]. International petroleum economics, 2015, 23(6): 30-36, 110.
[2] 荣杨一鸣, 孙怡, 高俊, 等. 储氢场景与氢气储运系统的多维度模式匹配优化研究[J]. 太阳能学报, 2024, 45(6): 102-108.
RONG Y Y M, SUN Y, GAO J, et al. Research on optimal multi-dimensional model matching between hydrogen storage and transportation systems and hydrogen storage scenarios[J]. Acta energiae solaris sinica, 2024, 45(6): 102-108.
[3] 崔振莹. 氢能储运技术现状及发展分析[J]. 中外能源, 2024, 29(7): 31-39.
CUI Z Y.Current status and development of hydrogen storage and transportation technologies[J]. Sino-global energy, 2024, 29(7): 31-39.
[4] 姚美娇. 对新型电力系统演进趋势的认识[N]. 中国能源报, 2023-06-05(002).
YAO M J. Understanding the evolution trends of new power systems[N]. China energy news, 2023-06-05(002).
[5] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[6] 余建榕, 张强, 康慧芳, 等. 低温推进剂贮箱气冷屏复合绝热结构综合优化设计[J]. 真空与低温, 2021, 27(2): 165-170.
YU J R, ZHANG Q, KANG H F, et al.Comprehensive optimization design of VCS composite thermal insulation structure for cryogenic propellant tank[J]. Vacuum and cryogenics, 2021, 27(2): 165-170.
[7] 骆明强, 叶莉, 安刚. 液氢贮罐无损储存时间影响因素分析[J]. 中国设备工程, 2019(16): 113-114.
LUO M Q, YE L, AN G.Analysis of influencing factors on lossless storage time of liquid hydrogen storage tank[J]. China plant engineering, 2019(16): 113-114.
[8] 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21-29.
GUO Z F, JU Y L.Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics & superconductivity, 2019, 47(6): 21-29.
[9] 李佳超, 梁国柱. 运载火箭低温推进剂热管理技术及应用进展分析[J]. 宇航总体技术, 2017, 1(2): 59-70.
LI J C, LIANG G Z.Analysis of thermal management technology and its application progress for launch vehicle cryogenic propellants[J]. Astronautical systems engineering technology, 2017, 1(2): 59-70.
[10] LIU Z, LI Y Z, JIN Y H.Pressurization performance and temperature stratification in cryogenic final stage propellant tank[J]. Applied thermal engineering, 2016, 106: 211-220.
[11] 徐伟强, 李倩倩, 李万青. 无人机机载低温液氢储罐结构设计与强度分析[J]. 真空科学与技术学报, 2015, 35(8): 1017-1022.
XU W Q, LI Q Q, LI W Q.Simulation of mechanical strength of novel cryogenic liquid hydrogen tank for unmanned aerial vehicle[J]. Chinese journal of vacuum science and technology, 2015, 35(8): 1017-1022.
[12] 唐天柱, 谢小平, 白云志, 等. 基于动力学仿真及非线性阻尼优化的商用车驾驶室悬置系统改进[J]. 机械设计, 2014, 31(3): 42-46.
TANG T Z, XIE X P, BAI Y Z, et al.Commercial vehicle cab suspensions' improvement based on dynamics simulation and nonlinear damping optimization[J]. Journal of machine design, 2014, 31(3): 42-46.
[13] 庄方方, 吴胜宝, 闫指江, 等. 低温贮箱连接支撑结构优化设计[J]. 载人航天, 2016, 22(2): 160-163.
ZHUANG F F, WU S B, YAN Z J, et al.Optimization design of cryogenic tank connection structure[J]. Manned spaceflight, 2016, 22(2): 160-163.
[14] 张展智, 陈亮, 郑红飞, 等. 基于碳纤维复合材料的低温贮箱支撑杆设计与仿真[J]. 载人航天, 2017, 23(1): 61-64.
ZHANG Z Z, CHEN L, ZHENG H F, et al.Design and static simulation analysis of cryogenic tank strut based on carbon fiber reinforced composites[J]. Manned spaceflight, 2017, 23(1): 61-64.
[15] 孟国亮, 牛小亮, 解浩, 等. 低温贮箱支撑结构与绝热性能研究[J]. 甘肃科技, 2023, 39(8): 7-12.
MENG G L, NIU X L, XIE H, et al.Study on supporting structure and thermal insulation performance of low temperature tank[J]. Gansu science and technology, 2023, 39(8): 7-12.
[16] PARMLEY R T.Passive orbital disconnect strut (PODS Ⅱ) structural test program[R]. NASA-CR-177325NASA, 1985.
[17] 郑正路, 高子涵, 吴胜宝, 等. 低温贮箱被动在轨非连接支撑结构力热特性仿真分析[J]. 载人航天, 2020, 26(2): 185-189.
ZHENG Z L, GAO Z H, WU S B, et al.Mechanical and thermal properties simulation of cryogenic tank passive orbital disconnect strut[J]. Manned spaceflight, 2020, 26(2): 185-189.
[18] SULLIVAN R M, PALKO J L,TORNABENE R T, et al.Engineering analysis studies for preliminary design of lightweight cryogenic hydrogen tanks in UAV application[R]. NASA/TP-2006-214094, 2006.
[19] MILLS M G, TORNABENE R T, JURNS J M, et al.Hydrogen fuel system design trades for high-altitude long-endurance remotely-operated aircraft[R]. NASA/TM, 2009.
[20] 徐伟强, 杨国栋, 娄鹏. 无人机机载液氢储罐绝热结构设计与仿真[J]. 真空科学与技术学报, 2015, 35(3): 266-270.
XU W Q, YANG G D, LOU P.Design and simulation of airborne liquid-hydrogen tank for unmanned aerial vehicle[J]. Chinese journal of vacuum science and technology, 2015, 35(3): 266-270.
[21] 张卫义, 李星波, 姚欣, 等. LNG卧式储罐拉带式支撑应力分析及结构优化[J]. 压力容器, 2022, 39(8): 40-49.
ZHANG W Y, LI X B, YAO X, et al.Stress analysis and structure optimization of tension band support for LNG horizontal storage tank[J]. Pressure vessel technology, 2022, 39(8): 40-49.
[22] 邢力超, 许光, 郑茂琦, 等. 运载火箭超临界氦贮罐内支撑结构研究[J]. 低温工程, 2021(4): 65-69.
XING L C, XU G, ZHENG M Q, et al.Research on inner supporting structure of supercritical helium tank in launch vehicle[J]. Cryogenics, 2021(4): 65-69.
[23] 史超帆, 陈叔平, 王洋, 等. 纤维方向对环氧树脂/玻纤复合材料导热性能影响[J]. 工程塑料应用, 2022, 50(11): 108-116.
SHI C F, CHEN S P, WANG Y, et al.Effects of fibre orientation on thermal conductivity of epoxy/glass fibre composites[J]. Engineering plastics application, 2022, 50(11): 108-116.
[24] ADAM P, LEACHMAN J.Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle[C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference - CEC. Anchorage, Alaska, USA, 2014: 1299-1304.
[25] 赵福祥, 魏蔚, 刘康, 等. 纤维复合材料在低温容器内支撑结构中的应用[J]. 低温工程, 2005(3): 23-26, 34.
ZHAO F X, WEI W, LIU K, et al.Properties of fibre reinforced plastic used in the inner supporting structure of cryogenic vessels[J]. Gryogenics, 2005(3): 23-26, 34.
[26] 高彦峰, 宋琦, 谢高峰, 等. 临近空间无人机液氢供能系统技术分析[J]. 航空工程进展, 2024, 15(2): 11-24.
GAO Y F, SONG Q, XIE G F, et al.Analysis of liquid hydrogen power systems for near space unmanned aerial vehicles[J]. Advances in aeronautical science and engineering, 2024, 15(2): 11-24.
[27] 赵杰, 邵湛惟, 李兆亭, 等. 车载LNG气瓶框架结构的拓扑优化设计[J]. 机械设计与制造, 2020(11): 217-220.
ZHAO J, SHAO Z W, LI Z T, et al.Topology optimization design of frame structure of vehicle LNG gas cylinder[J]. Machinery design & manufacture, 2020(11): 217-220.
[28] 张永杰, 王鸿琛, 崔博, 等. 氢能客机低温液氢储罐装机环境适应性研究进展[J]. 航空学报, 2025, 46(9):629870.
ZHANG Y J, WANG H C, CUI B, et al.Research progress in installation environment adaptability of cryogenic liquid hydrogen tanks for hydrogen-powered aircraft[J]. Acta aeronautica et astronautica sinica, 2025, 46(9): 629870.
[29] 刘绪, 刘伟, 周云龙, 等. 吸气式内外流一体化飞行器动导数数值模拟[J]. 空气动力学学报, 2015, 33(2): 147-155.
LIU X, LIU W, ZHOU Y L, et al.Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta aerodynamica sinica, 2015, 33(2): 147-155.
[30] 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555.
BAO W M.A review of reusable launch vehicle technology development[J]. Acta aeronautica et astronautica sinica, 2023, 44(23): 629555.
PDF(1106 KB)

Accesses

Citation

Detail

Sections
Recommended

/