WAVE-CURRENT COUPLED CHAIN GENERATOR FOR OFFSHORE BUOY NAVIGATION LIGHT

Zhang Jijun, Zhang Xiangyu, Song Yongxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 238-247.

PDF(2409 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2409 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 238-247. DOI: 10.19912/j.0254-0096.tynxb.2024-0883

WAVE-CURRENT COUPLED CHAIN GENERATOR FOR OFFSHORE BUOY NAVIGATION LIGHT

  • Zhang Jijun1, Zhang Xiangyu2, Song Yongxin2
Author information +
History +

Abstract

In response to the increasing energy consumption demands of offshore buoy navigation lights, this paper proposes a submerged chain generator capable of simultaneously harnessing wave and tidal energy in the marine environment. The motion and output voltage models of the generator are established, and numerical simulations are conducted to study the effects of component structure and motion parameters on its power generation performance. The stiffness of the springs and the planar excitation array structure in the generator are reasonably determined and experimentally verified. The results show that, under the same wave-current coupled excitation, the motion magnitude of the array decreases with the increase in the stiffness of the springs. The output voltage also increases with the increase in the motion frequency and magnitude of the array. When the swing magnitude and frequency of the anchor chain are 142.70 mm and 0.85 Hz, respectively, the power generation device (array dimensions: length × width × height=50 mm×20 mm × 50 mm) achieves an average voltage magnitude of 5.02 V and a maximum no-load power density of 0.024 mW/cm3, enabling the collection and conversion of low-frequency wave and current energy and providing power for offshore buoy navigation lights.

Key words

buoy / wave energy conversion / marine current generators / wave-current coupled / anchor chain generator / wave power

Cite this article

Download Citations
Zhang Jijun, Zhang Xiangyu, Song Yongxin. WAVE-CURRENT COUPLED CHAIN GENERATOR FOR OFFSHORE BUOY NAVIGATION LIGHT[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 238-247 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0883

References

[1] 李鹏, 江恩祝, 王思荐, 等. 海上警戒浮标实时监控系统[J]. 海洋工程, 2016, 34(6): 131-136.
LI P, JIANG E Z, WANG S J, et al.Real-time monitoring system of alert buoys for offshore observation[J]. The ocean engineering, 2016, 34(6): 131-136.
[2] 吴金明, 陈妮, 钱晨. 惯性式波浪能供电浮标的液压能量转换系统设计研究[J]. 机械工程学报, 2022, 58(4): 222-231.
WU J M, CHEN N, QIAN C.Research on design method of the hydraulic energy conversion system of inertial wave-energy-powered buoy[J]. Journal of mechanical engineering, 2022, 58(4): 222-231.
[3] 丁士圻, 郭丽华, 秦世军, 等. 一种新型多功能海洋浮标[J]. 海洋工程, 2005, 23(3): 90-93.
DING S Q, GUO L H, QIN S J, et al.Multi-purpose ocean observing buoy[J]. The ocean engineering, 2005, 23(3): 90-93.
[4] MCLEOD I, RINGWOOD J V.Powering data buoys using wave energy: a review of possibilities[J]. Journal of ocean engineering and marine energy, 2022, 8(3): 417-432.
[5] 张亚群, 李显豪, 盛松伟, 等. 波浪能供电观测浮标防腐方案设计及仿真[J]. 太阳能学报, 2024, 45(2): 213-217.
ZHANG Y Q, LI X H, SHENG S W, et al.Design and simulation of anticorrosion scheme of observation buoy for wave power plant[J]. Acta energiae solaris sinica, 2024, 45(2): 213-217.
[6] 席林通, 李醒飞, 宋龙江, 等. 南海海域波浪能资源模拟评估[J]. 可再生能源, 2021, 39(4): 561-568.
XI L T, LI X F, SONG L J, et al.Simulative evaluation of wave energy resources in the South China Sea[J]. Renewable energy resources, 2021, 39(4): 561-568.
[7] 孙海, 白旭. 基于流致振动的海流能发电技术及研究现状[J]. 船舶工程, 2023, 45(1): 18-26.
SUN H, BAI X.Current status of ocean current energy power generation technology based on flow-induced vibration[J]. Ship engineering, 2023, 45(1): 18-26.
[8] 刘家瑞, 张海成, 周潇, 等. 非线性铰接浮体波能转换器的动力学特性研究[J]. 海洋工程, 2023, 41(5): 57-69.
LIU J R, ZHANG H C, ZHOU X, et al.Dynamic characteristics of nonlinear articulated floating body wave energy converter[J]. The ocean engineering, 2023, 41(5): 57-69.
[9] 万勇, 冯晓顺, 程秋薇, 等. 中国南海海洋牧场的波浪能资源评估[J]. 太阳能学报, 2024, 45(10): 691-698.
WAN Y, FENG X S, CHENG Q W, et al.Assessment of wave energy resources in marine pastures in South China Sea[J]. Acta energiae solaris sinica, 2024, 45(10): 691-698.
[10] 王群峰, 薛钢, 秦健, 等. 内置偏心摆式波浪能发电装置运动响应分析[J]. 太阳能学报, 2024, 45(10): 710-716.
WANG Q F, XUE G, QIN J, et al.Motion response study of inner eccentric pendulum wave energy converter[J]. Acta energiae solaris sinica, 2024, 45(10): 710-716.
[11] 毛垚飞, 朱克强, 夏峰, 等. 海洋浮标发电装置优先工况选择的动力学分析[J]. 中国航海, 2017, 40(3): 54-57, 102.
MAO Y F, ZHU K Q, XIA F, et al.Dynamic analysis for selection of preferable operating mode for conversion device of ocean buoys[J]. Navigation of China, 2017, 40(3): 54-57, 102.
[12] SONG C H, ZHU X, WANG M L, et al.Recent advances in ocean energy harvesting based on triboelectric nanogenerators[J]. Sustainable energy technologies and assessments, 2022, 53: 102767.
[13] WANG H Y, WU W M, CUI L, et al.A new wave energy converter for marine data buoy[J]. IEEE transactions on industrial electronics, 2023, 70(2): 2076-2084.
[14] AHMED A, WANG Y N, AZAM A, et al.Design of an S-shaped point-absorber wave energy converter with a non-linear PTO to power the satellite-respondent buoys in the East China Sea[J]. Ocean engineering, 2023, 275: 114162.
[15] 李云飞, 耿江军, 汤添益, 等. 面向新能源浮标的平面摆式波浪能收集装置研究[J]. 机械工程学报, 2021, 57(12): 275-284.
LI Y F, GENG J J, TANG T Y, et al.Study on water wave energy harvester for clean energy buoys[J]. Journal of mechanical engineering, 2021, 57(12): 275-284.
[16] SIM J H, AHN D G, KIM D Y, et al.Three-dimensional equivalent magnetic circuit network method for precise and fast analysis of PM-assisted claw-pole synchronous motor[J]. IEEE transactions on industry applications, 2018, 54(1): 160-171.
[17] CAI W Z, ROUSSINOVA V, STOILOV V.Piezoelectric wave energy harvester[J]. Renewable energy, 2022, 196: 973-982.
[18] LI Y F, GUO Q Y, HUANG M J, et al.Study of an electromagnetic ocean wave energy harvester driven by an efficient swing body toward the self-powered ocean buoy application[J]. IEEE access, 2019, 7: 129758-129769.
[19] FENG W W, CHEN H Y, ZOU Q P, et al.A contactless coupled pendulum and piezoelectric wave energy harvester: model and experiment[J]. Energies, 2024, 17(4): 876.
[20] CHEN S E, YANG R Y, WU G K, et al.A piezoelectric wave-energy converter equipped with a geared-linkage-based frequency up-conversion mechanism[J]. Sensors, 2021, 21(1): 204.
[21] 姜先策, 孙双双. 基于弹簧振子的简谐振动图像演示实验的改进设计与制作[J]. 科技视界, 2019(32): 23, 25.
JIANG X C, SUN S S. The application of Polaroid light in engineering[J]. Science & technology vision, 2019(32): 23, 25.
[22] ZHOU Q, JI B, HU F M, et al.Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication[J]. Advanced functional materials, 2022, 32(46): 2208120.
[23] WANG T, ZHOU Z X.Analytical solution of magnetic field distribution in brushless permanent magnet machines with rotor axis deflection[J]. IEEE transactions on magnetics, 2015, 51(4): 8202606.
[24] XU X Y, HUANG Z, LI W, et al.3D finite element modelling on racetrack coils using the homogeneous T-a formulation[J]. Cryogenics, 2021, 119: 103366.
[25] 戈宝军, 杨子豪, 陶大军, 等. 计及磁路分布特性的电磁轴承解析模型建立与支撑性能影响因素研究[J]. 电工技术学报, 2023, 38(8): 2025-2035, 2085.
GE B J, YANG Z H, TAO D J, et al.Establishment of analytical model of active magnetic bearing considering magnetic circuit distribution characteristics and study on influencing factors of support performance[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2025-2035, 2085.
PDF(2409 KB)

Accesses

Citation

Detail

Sections
Recommended

/