MULTI-TYPE POWER SUPPLY PLANNING OF POWER SYSTEM CONSIDERING VIRTUAL POWER PLANTS

Luo Peng, Wang Sheng, Liu Chensong, Ouyang Lilin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 744-755.

PDF(1161 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1161 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 744-755. DOI: 10.19912/j.0254-0096.tynxb.2024-0886

MULTI-TYPE POWER SUPPLY PLANNING OF POWER SYSTEM CONSIDERING VIRTUAL POWER PLANTS

  • Luo Peng1,2, Wang Sheng2, Liu Chensong2, Ouyang Lilin3
Author information +
History +

Abstract

Access to virtual power plants that aggregate a large number of dispersed demand-side resources provides new possibilities for the efficient development of power systems in the future. The flexible load in the virtual power plant can participate in the demand response and bring this flexibility into the power system planning framework, which can effectively reduce the system planning and operation costs and promote the consumption of renewable energy. Therefore, this paper proposes a multi-type power planning method considering virtual power plant empowerment. Firstly, the adjustable potential model of virtual power plant is established for different types of virtual power plants such as electric vehicles, air conditioning loads and industrial loads. Secondly, considering the operation constraints of virtual power plant for power planning, a power planning model considering virtual power plant empowerment is constructed. Furthermore, considering the uncertain factors such as the prediction error of new energy and the characterization error of the response potential of virtual power plants, the interval optimization method is adopted to deal with it. Then, the interval programming model is definitely transformed by interval order relation and interval possibility degree, and an improved benders decomposition algorithm is proposed to realize the efficient solution of the transformed model. Finally, an example is given to verify the effectiveness of the proposed power planning model and method.

Key words

electric power system planning / virtual power plants / demand side management / interval optimization / benders decomposition

Cite this article

Download Citations
Luo Peng, Wang Sheng, Liu Chensong, Ouyang Lilin. MULTI-TYPE POWER SUPPLY PLANNING OF POWER SYSTEM CONSIDERING VIRTUAL POWER PLANTS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 744-755 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0886

References

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 赵本源, 熊岑, 张沛超, 等. 信息物理融合的负荷型虚拟电厂聚合方法[J]. 电力需求侧管理, 2020, 22(1): 15-20, 27.
ZHAO B Y, XIONG C, ZHANG P C, et al. Aggregation method of load virtual power plant based on cyber-physical system[J]. Power demand side management, 2020, 22(1): 15-20, 27.
[3] 山西省行政规范性文件库.关于印发《虚拟电厂建设与运营管理实施方案》的通知[EB/OL].http://www.shanxi.gov.cn/.
Shanxi Provincial Administrative Normative Document Database. Notice on Printing and Distributing the Implementation Plan of Virtual Power Plant Construction and Operation Management [EB/OL].http://www.shanxi.gov.cn/.
[4] 莫理莉, 兰峻焜, 周亮, 等. 虚拟电厂下灵活资源多时间尺度调频控制[J]. 电力系统自动化, 2024, 48(18): 76-86.
MO L L, LAN J K, ZHOU L, et al. Multi-timescale frequency regulation control of flexible resources in virtual power plant[J]. Automation of electric power systems, 2024, 48(18): 76-86.
[5] 廖思阳, 贺聪, 李玲芳, 等. 考虑电力网络约束的工业园区虚拟电厂调控边界求解方法[J]. 电力系统自动化, 2024, 48(18): 66-75.
LIAO S Y, HE C, LI L F, et al. Solution method of regulation boundary for industrial park virtual power plant considering power network constraints[J]. Automation of electric power systems, 2024, 48(18): 66-75.
[6] 张卫国, 徐青山, 陈堃, 等. 考虑电价敏感用户行为的电动汽车虚拟电厂外特性[J]. 高电压技术, 2023, 49(4): 1372-1379.
ZHANG W G, XU Q S, CHEN K, et al. External characteristics of electric vehicle virtual power plant considering electricity price-sensitive user behavior[J]. High voltage engineering, 2023, 49(4): 1372-1379.
[7] 陈宇扬, 邵军杰, 陈进举正, 等. 考虑用电满意度与响应量期望的虚拟电厂需求响应交易模型[J]. 电力自动化设备, 2023, 43(5): 226-234.
CHEN Y Y, SHAO J J, CHEN J, et al. Demand response trading model of virtual power plant considering electricity consumption satisfaction degree and response quantity expectation[J]. Electric power automation equipment, 2023, 43(5): 226-234.
[8] 高洪超, 李楚一, 王冠雄, 等. 聚合规模化5G基站的虚拟电厂动态构建与响应实证[J]. 电力系统自动化, 2024, 48(18): 47-55.
GAO H C, LI C Y, WANG G X, et al. Dynamic construction and response demonstration of virtual power plant with aggregated large-scale 5G base stations[J]. Automation of electric power systems, 2024, 48(18): 47-55.
[9] 刘鑫, 李扬, 史云鹏, 等. 计及用户参与不确定性的虚拟电厂分布鲁棒优化模型[J]. 电力自动化设备, 2022, 42(7): 84-93.
LIU X, LI Y, SHI Y P, et al. Distributionally robust optimization model of virtual power plant considering user participation uncertainty[J]. Electric power automation equipment, 2022, 42(7): 84-93.
[10] 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37-48.
WANG C X, SHI Z Y, LIANG Z F, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of electric power systems, 2021, 45(16): 37-48.
[11] 陈会来, 张海波, 王兆霖. 不同类型虚拟电厂市场及调度特性参数聚合算法研究综述[J]. 中国电机工程学报, 2023, 43(1): 15-28.
CHEN H L, ZHANG H B, WANG Z L. A review of market and scheduling characteristic parameter aggregation algorithm of different types of virtual power plants[J]. Proceedings of the CSEE, 2023, 43(1): 15-28.
[12] HAO H, SANANDAJI B M, POOLLA K, et al.Aggregate flexibility of thermostatically controlled loads[J]. IEEE transactions on power systems, 2015, 30(1): 189-198.
[13] 王明深, 于汀, 穆云飞, 等. 考虑用户参与度的电动汽车能效电厂模型[J]. 电力自动化设备, 2017, 37(11): 201-210.
WANG M S, YU T, MU Y F, et al. Model of E-EPP considering participation factor of EV users[J]. Electric power automation equipment, 2017, 37(11): 201-210.
[14] 程杉, 赵孟雨, 倪凯旋, 等. 考虑广义需求侧资源的微电网规划设计[J]. 现代电力, 2020, 37(2): 180-186.
CHENG S, ZHAO M Y, NI K X, et al. Design optimization of microgrid based on generalized demand side resources[J]. Modern electric power, 2020, 37(2): 180-186.
[15] 宋毅, 欧阳邵杰, 王旭阳, 等. 考虑需求侧资源的新型电网规划模式[J]. 电力建设, 2013, 34(11): 12-16.
SONG Y, OUYANG S J, WANG X Y, et al. New power grid planning model with considering demand side resources[J]. Electric power construction, 2013, 34(11): 12-16.
[16] BARINGO L, CONEJO A J.Correlated wind-power production and electric load scenarios for investment decisions[J]. Applied energy, 2013, 101: 475-482.
[17] 姜恩宇, 陈周, 史雷敏, 等. 计及多重不确定性与综合贡献率的多微网合作运行策略[J]. 太阳能学报, 2023, 44(10): 80-89.
JIANG E Y, CHEN Z, SHI L M, et al. Cooperative operation strategy of multi-microgrids based on multiple uncertainties and comprehen sive contribution rate[J]. Acta energiae solaris sinica, 2023, 44(10): 80-89.
[18] BAI L Q, LI F X, CUI H T, et al.Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty[J]. Applied energy, 2016, 167: 270-279.
[19] 曾博, 徐富强, 刘裕, 等. 考虑可再生能源与需求响应协同增效的能量枢纽多目标区间优化规划方法[J]. 中国电机工程学报, 2021, 41(21): 7212-7225.
ZENG B, XU F Q, LIU Y, et al. Multi-objective interval optimization approach for energy hub planning with consideration of renewable energy and demand response synergies[J]. Proceedings of the CSEE, 2021, 41(21): 7212-7225.
[20] 沈赋, 杨光兵, 王健, 等. 计及电-气园区综合能源系统多重不确定性的变置信区间优化调度[J]. 电力自动化设备, 2024, 44(11): 33-40.
SHEN F, YANG G B, WANG J, et al.Optimal dispatching with variable confidence interval considering multiple uncertainties of integrated energy system in electric-gas park[J]. Electric power automation equipment, 2024, 44(11): 33-40.
[21] 史喆, 梁毅, 李华, 等. 计及灵活性多目标电-热-交通综合能源系统区间优化运行[J]. 电力系统保护与控制, 2022, 50(21): 33-42.
SHI Z, LIANG Y, LI H, et al. Interval optimal operation of a multi-objective electric-thermal-transportation integrated energy system considering flexibility[J]. Power system protection and control, 2022, 50(21): 33-42.
[22] LI Y Z, WANG P, GOOI H B, et al.Multi-objective optimal dispatch of microgrid under uncertainties via interval optimization[J]. IEEE transactions on smart grid, 2019, 10(2): 2046-2058.
[23] ZENGB, ZHANG JH, YANG X, et al.Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response[J]. IEEE transactions on power system, 2014, 29(3): 1153-1163.
[24] YAO M T, HU Z G, ZHANG N, et al.Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services[J]. Journal of modern power systems and clean energy, 2015, 3(1): 131-138.
[25] 王蓓蓓. 面向智能电网的用户需求响应特性和能力研究综述[J]. 中国电机工程学报, 2014, 34(22): 3654-3663.
WANG B B. Research on consumers'response characterics and ability under smart grid: a literatures survey[J]. Proceedings of the CSEE, 2014, 34(22): 3654-3663.
[26] 吴界辰, 艾欣, 胡俊杰. 需求侧资源灵活性刻画及其在日前优化调度中的应用[J]. 电工技术学报, 2020, 35(9): 1973-1984.
WU J C, AI X, HU J J. Methods for characterizing flexibilities from demand-side resources and their applications in the day-ahead optimal scheduling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1973-1984.
[27] 王锡凡. 电力系统优化规划[M]. 北京: 水利电力出版社, 1990.
WANG X F. Power system optimization planning [M]. Beijing: Water Resources and Electric Power Press, 1990.
[28] 刘文霞, 姚齐, 王月汉, 等. 基于阶梯型需求响应机制的供需主从博弈电源规划模型[J]. 电力系统自动化, 2022, 46(20): 54-63.
LIU W X, YAO Q, WANG Y H, et al. Generation planning model of Stackelberg game between supply and demand based on stepped demand response mechanism[J]. Automation of electric power systems, 2022, 46(20): 54-63.
[29] LI Q T, WANG J X, ZHANG Y, et al.Multi-period generation expansion planning for sustainable power systems to maximize the utilization of renewable energy sources[J]. Sustainability, 2020, 12(3): 1083.
[30] ZHANG J M, DOMÍNGUEZ-GARCÍA A D. Evaluation of demand response resource aggregation system capacity under uncertainty[J]. IEEE transactions on smart grid, 2018, 9(5): 4577-4586.
[31] 苏永新, 聂伟棋, 谭貌. 考虑风电接入和气电转换的综合能源系统日前区间优化[J]. 电力系统自动化, 2019, 43(17): 63-71.
SU Y X, NIE W Q, TAN M. Day-ahead interval optimization of integrated energy system considering wind power integration and gas-electricity transformation[J]. Automation of electric power systems, 2019, 43(17): 63-71.
[32] 万庆祝, 刘伟娜. 考虑风荷不确定性的大用户直购电鲁棒区间优化调度[J]. 太阳能学报, 2022, 43(7): 347-355.
WAN Q Z, LIU W N. Direct power purchase by large consumers considering wind load uncertainty robust interval optimal scheduling[J]. Acta energiae solaris sinica, 2022, 43(7): 347-355.
[33] 曾博, 穆宏伟, 孟自帅, 等. 考虑通信灵活性的5G基站与含光伏电源配电网多目标区间规划[J]. 太阳能学报, 2024, 45(4): 423-433.
ZENG B, MU H W, MENG Z S, et al. Multi-objective interval planning for 5G base stations and distribution networks with photovoltaic power sources considering communication flexibility[J]. Acta energiae solaris sinica, 2024, 45(4): 423-433.
PDF(1161 KB)

Accesses

Citation

Detail

Sections
Recommended

/