EXPERIMENTAL STUDY ON ENERGY CAPTURE CHARACTERISTICS OF MEGAWATT-CLASS WAVE ENERGY CONVERTER

Chen Min, Sheng Songwei, Zhang Yaqun, Wang Zhenpeng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 248-253.

PDF(1542 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1542 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 248-253. DOI: 10.19912/j.0254-0096.tynxb.2024-0895

EXPERIMENTAL STUDY ON ENERGY CAPTURE CHARACTERISTICS OF MEGAWATT-CLASS WAVE ENERGY CONVERTER

  • Chen Min1,2, Sheng Songwei1,2, Zhang Yaqun1,2, Wang Zhenpeng1,2
Author information +
History +

Abstract

The design and working principle of a new megawatt-class wave energy converter (WEC) is introduced briefly, which consists of a semi-submersible floating body, a wave energy capture system, an energy conversion system, and a mooring system. The unstable wave energy is converted into stable electric energy by using a sharp eagle wave-absorbing floater and a hydraulic energy conversion system. Experiments on the energy capture efficiency of the megawatt-class WEC were carried out. Results show that the megawatt-class WEC can achieve highly efficient capture of wave energy. The energy capture efficiency of the megawatt-class WEC is mostly between 30% and 50%, and the maximum reaches 56.17%. The sharp eagle wave absorber has better absorbing properties in heading waves than in oblique waves. The energy capture efficiency in heading waves is 1.6 times that in oblique waves. The five wave absorbers on the same side of the megawatt-class WEC should be arranged to directly facing the predominant wave direction.

Key words

wave energy conversion / megawatt-class / model / energy conversion efficiency / regular wave / model test

Cite this article

Download Citations
Chen Min, Sheng Songwei, Zhang Yaqun, Wang Zhenpeng. EXPERIMENTAL STUDY ON ENERGY CAPTURE CHARACTERISTICS OF MEGAWATT-CLASS WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 248-253 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0895

References

[1] CRUZ JOÃO.Ocean wave energy current status and future perspectives[M]. America:Springer, 2008.
[2] 武贺, 方舣洲, 张松, 等. 南海岛礁海域波浪能资源分析及总量评估[J]. 太阳能学报, 2022, 43(9): 416-423.
WU H, FANG Y Z, ZHANG S, et al.Wave energy characterization and potential estimation for islands of South China Sea[J]. Acta energiae solaris sinica, 2022, 43(9): 416-423.
[3] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[4] 方红伟. 波浪发电系统设计与控制[M]. 北京: 科学出版社, 2020.
FANG H W.Design and control of wave power generation system[M]. Beijing: Science Press, 2020.
[5] EVANS D V, FALCÃO A F O. Hydrodynamics of ocean wave-energy utilization[M]. Cham: Springer Berlin Heidelberg, 1986.
[6] SARMENTO A.Model-test optimization of an OWC wave power plant[J]. International journal of offshore and polar engineering, 1993, 3(1): 66-73.
[7] KOFOED J P, FRIGAARD P, FRIIS-MADSEN E, et al.Prototype testing of the wave energy converter wave dragon[J]. Renewable energy, 2006, 31(2): 181-189.
[8] MARGHERITINI L, VICINANZA D, FRIGAARD P.SSG wave energy converter: design, reliability and hydraulic performance of an innovative overtopping device[J]. Renewable energy, 2009, 34(5): 1371-1380.
[9] VICINANZA D, MARGHERITINI L, KOFOED J P, et al.The SSG wave energy converter: performance, status and recent developments[J]. Energies, 2012, 5(2): 193-226.
[10] SHENG W N.Wave energy conversion and hydrodynamics modelling technologies: a review[J]. Renewable and sustainable energy reviews, 2019, 109: 482-498.
[11] 周逸伦, 张亚群, 盛松伟, 等. 振荡水柱式波浪能供电浮标水动力学性能研究[J]. 太阳能学报, 2023, 44(3): 298-303.
ZHOU Y L, ZHANG Y Q, SHENG S W, et al.Study on hydrodynamic performance of oscillating water column wave energy-powered buoy[J]. Acta energiae solaris sinica, 2023, 44(3): 298-303.
[12] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions Series A, mathematical, physical, and engineering sciences, 2012, 370(1959): 235-245.
[13] LINDROTH S, LEIJON M.Offshore wave power measurements: a review[J]. Renewable and sustainable energy reviews, 2011, 15(9): 4274-4285.
[14] FALCÃO A F O, HENRIQUES J C C. Oscillating-water-column wave energy converters and air turbines: a review[J]. Renewable energy, 2016, 85: 1391-1424.
[15] 史宏达, 刘臻. 海洋波浪能研究进展及发展趋势[J]. 科技导报, 2021, 39(6): 22-28.
SHI H D, LIU Z.Research status and development tendency of ocean wave energy[J]. Science & technology review, 2021, 39(6): 22-28.
[16] LÓPEZ I, ANDREU J, CEBALLOS S, et al. Review of wave energy technologies and the necessary power-equipment[J]. Renewable and sustainable energy reviews, 2013, 27: 413-434.
[17] BAHAJ A S.Generating electricity from the oceans[J]. Renewable and sustainable energy reviews, 2011, 15(7): 3399-3416.
[18] WHITTAKER T, COLLIER D.The development of Oyster-a shallow water surging wave energy converter[C]//Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 2007.
[19] HART P, LURIE R. Application of PowerBuoy wave energy converter technology to remote power requirements in oil and gas field developments[C]//Offshore Technology Conference, Houston, Texas, USA, 2012: OTC-23135-MS.
[20] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.
LU Q, SHI H D.Progress and future trend of wave energy technology in China[J]. Coastal engineering, 2022, 41(1): 1-12.
[21] 盛松伟, 张亚群, 王坤林, 等. “鹰式一号” 波浪能发电装置研究[J]. 船舶工程, 2015, 37(9): 104-108.
SHENG S W, ZHANG Y Q, WANG K L, et al.Research on wave energy converter sharp eagle I[J]. Ship engineering, 2015, 37(9): 104-108.
[22] 盛松伟, 王坤林, 吝红军, 等. 100 kW鹰式波浪能发电装置“万山号” 实海况试验[J]. 太阳能学报, 2019, 40(3): 709-714.
SHENG S W, WANG K L, LIN H J, et al.Open sea tests of 100 kW wave energy convertor sharp eagle Wanshan[J]. Acta energiae solaris sinica, 2019, 40(3): 709-714.
[23] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Development status and application direction of wave energy generation technology[J]. Advances in new and renewable energy, 2019, 7(4): 374-378.
PDF(1542 KB)

Accesses

Citation

Detail

Sections
Recommended

/