OPTOELECTRONIC DESIGN OF LOCALIZED PASSIVATED CONTACT HJT SOLAR CELLS ENABLING EFFICIENCY OF 27%

Lin Wenjie, Wang Haozheng, Wang Yongqian, Qiu Kaifu, Yu Xuegong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 611-617.

PDF(2528 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2528 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 611-617. DOI: 10.19912/j.0254-0096.tynxb.2024-0909

OPTOELECTRONIC DESIGN OF LOCALIZED PASSIVATED CONTACT HJT SOLAR CELLS ENABLING EFFICIENCY OF 27%

  • Lin Wenjie1,2, Wang Haozheng1,2, Wang Yongqian2, Qiu Kaifu2, Yu Xuegong1
Author information +
History +

Abstract

In this work, the optical simulation by Sunsolve and device simulation by Quokka3 are used to investigate the effects of cell structure, film material and film thickness, front contact resistance, wafer resistivity, and front finger pitch on the optical and electrical performance of HJT cells. Compared with the conventional HJT solar cell, the MgFx/Ag back reflector and the thin ITO of 12 nm are used on the back side, improving reflection at long wavelengths and reducing parasitic absorption on the backside. On the front side, the nc-Si: H(n)/ITO contact regions with high parasitic absorption are limited below the fingers, while a highly transparent SiNx/SiOx stack is used in the passivated regions, which significantly reduces the parasitic absorption and external reflection on the front side, and increases the cell JSC by 1.63 mA/cm2, reaching 41.75 mA/cm2. By using the optimized front finger pitch of 1.25 mm, resistivity of 1 Ω·cm, and front ρc of 0.2 mΩ·cm2, localized passivated contact HJT solar cells with an efficiency of 27% are achieved. Compared with conventional HJT solar cells, the efficiency is improved by 0.97%, while the front and back thin ITO design reduces the fabrication cost of HJT cells.

Key words

solar cells / silicon / heterojunction / optoelectronic design / local contact / simulated calculation

Cite this article

Download Citations
Lin Wenjie, Wang Haozheng, Wang Yongqian, Qiu Kaifu, Yu Xuegong. OPTOELECTRONIC DESIGN OF LOCALIZED PASSIVATED CONTACT HJT SOLAR CELLS ENABLING EFFICIENCY OF 27%[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 611-617 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0909

References

[1] IBARRA MICHEL J, DRÉON J, BOCCARD M, et al. Carrier-selective contacts using metal compounds for crystalline silicon solar cells[J]. Progress in photovoltaics: research and applications, 2023, 31(4): 380-413.
[2] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al. Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[3] LIN H, YANG M, RU X N, et al.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature energy, 2023, 8(8): 789-799.
[4] RICHTER A, MÜLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature energy, 2021, 6(4): 429-438.
[5] BOCCARD M, ANTOGNINI L, CATTIN J, et al.Loss analysis of a 24.4%-efficient front-junction silicon heterojunction solar cell and opportunity for localized contacts[J]. IEEE journal of photovoltaics, 2023, 13(5): 663-671.
[6] 杨煜豪, 刘文柱, 张丽平, 等. 晶硅异质结太阳电池nc-Si: H/nc-SiOx: H叠层窗口层研究[J]. 太阳能学报, 2023, 44(8): 203-207.
YANG Y H, LIU W Z, ZHANG L P, et al. Research on nc-Si:H/nc-SiOx:H stacked thin films as silicon heterojunction solar cell window layer[J]. Acta energiae solaris sinica, 2023, 44(8): 203-207.
[7] 王梦笑, 王光红, 赵雷, 等. 用于晶硅异质结太阳电池的透明导电薄膜研究进展[J]. 太阳能学报, 2023, 44(11): 16-22.
WANG M X, WANG G H, ZHAO L, et al. Research progress of TCO films for silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2023, 44(11): 16-22.
[8] HOLMAN Z C, FILIPIČ M, DESCOEUDRES A, et al.Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells[J]. Journal of applied physics, 2013, 113(1): 013107.
[9] DUAN W Y, LAMBERTZ A, BITTKAU K, et al.A route towards high-efficiency silicon heterojunction solar cells[J]. Progress in photovoltaics: research and applications, 2022, 30(4): 384-392.
[10] PV LIGHTHOUSE, Sunsolve, https://www.pvlighthouse.com.au/sunsolve-power, 2024-03-14.
[11] PADUTHOL A, JUHL M K, NOGAY G, et al.Measuring carrier injection from amorphous silicon into crystalline silicon using photoluminescence[J]. Progress in photovoltaics: research and applications, 2018, 26(12): 968-973.
[12] HOLMAN Z C, DESCOEUDRES A, BARRAUD L, et al.Current losses at the front of silicon heterojunction solar cells[J]. IEEE journal of photovoltaics, 2012, 2(1): 7-15.
[13] ANDREAS F, Quokka3, https://www.quokka3.com/, 2024-03-24.
[14] MCINTOSH K R, KHO T C, FONG K C, et al.Quantifying the optical losses in back-contact solar cells[C]//2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). Denver, CO, USA, 2014: 115-123.
PDF(2528 KB)

Accesses

Citation

Detail

Sections
Recommended

/