RESEARCH ON DEFECT DETECTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED YOLOV8

Cui Jianwei, Wang Yueming

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 189-196.

PDF(5132 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5132 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 189-196. DOI: 10.19912/j.0254-0096.tynxb.2024-0913

RESEARCH ON DEFECT DETECTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED YOLOV8

  • Cui Jianwei, Wang Yueming
Author information +
History +

Abstract

Aiming at the problem of detecting bird droppings and shading defects as well as light spot defects formed by diode damage in photovoltaic modules under aerial high-resolution images, a detection algorithm combining the improves deep learning model YOLOv8n with slice-assisted super-reasoning is proposed. The PV module dataset is constructed by slicing 2667 visible and thermal imaging images and labelling them with three kinds of defects: bird droppings, shading and light spots. Firstly, on the backbone network of YOLOv8n, a small target detection layer is constructed by adding a 3-layer CBS module to enhance the transmission of small target feature information. Secondly, a global attention mechanism is added to the Backbone part, adopting the framework of channel and spatial attention, so that the model can better capture the global feature information. Based on the above two improvements to the network structure to design its ablation experiments, the experimental results show that the improved model improves the mAP50 value and mAP50:95 by 4.3% and 1.5%, respectively, compared with the base model; to design the comparison experiments between the improved model and the other target detection models, and the experimental results show that the improved model's accuracy is better than that of the other detection models. Finally, combined with slice-assisted hyper-reasoning for slicing before detection, the overall model comparison experiments are designed with the addition of slice-assisted hyper-reasoning, and the experimental results show that the improved YOLOv8-PG+SAHI model is optimal for detecting small target defects in high-resolution photovoltaic module images, and the accuracy rate can reach 88.73%. The above experiments show that the improved model is more suitable for small target detection of PV modules under aerial high-resolution images.

Key words

PV modules / defects / deep learning / high-resolution images / small target detection

Cite this article

Download Citations
Cui Jianwei, Wang Yueming. RESEARCH ON DEFECT DETECTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED YOLOV8[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 189-196 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0913

References

[1] 廖智兴, 刘全兵, 黄斯珉, 等. 基于表面改性的光伏组件冷凝除尘特性研究[J]. 太阳能学报, 2022, 43(11): 33-40.
LIAO Z X, LIU Q B, HUANG S M, et al.Investigation of condensation-induced dust removal on modified surface for PV module[J]. Acta energiae solaris sinica, 2022, 43(11): 33-40.
[2] 王艳, 申宗旺, 赵洪山, 等. 基于LS-DCGAN的GCSE-DenseNet光伏组件缺陷识别方法[J]. 太阳能学报, 2023, 44(10): 165-172.
WANG Y, SHEN Z W, ZHAO H S, et al.Defect identification method for GCSE-Densenet photovoltaic module based on LS-DCGAN[J]. Acta energiae solaris sinica, 2023, 44(10): 165-172.
[3] HANAFY W A, PINA A, SALEM S A.Machine learning approach for photovoltaic panels cleanliness detection[C]//2019 15th International Computer Engineering Conference (ICENCO). Cairo, Egypt, 2019: 72-77.
[4] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学精密工程, 2023, 31(12): 1804-1815.
CHEN Y F, LIAO F, HUANG X Y, et al.Multi-scale YOLOv5 for solar cell defect detection[J]. Optics and precision engineering, 2023, 31(12): 1804-1815.
[5] 彭自然, 张颖清, 肖伸平. 基于YOLOv5的太阳电池表面缺陷检测[J]. 太阳能学报, 2024, 45(6): 368-375.
PENG Z R, ZHANG Y Q, XIAO S P.Research on surface defect detection of solar cell with improved YOLOv5 algorithm[J]. Acta energiae solaris sinica, 2024, 45(6): 368-375.
[6] YE L, WANG X Y, AN A M, et al.Deeplab-YOLO: a method for detecting hot-spot defects in infrared image PV panels by combining segmentation and detection[J]. Journal of real-time image processing, 2024, 21(2): 52.
[7] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536.
WANG D L, YAO C R, LI C, et al.Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536.
[8] 陈辉, 张傲, 孙帅, 等. 基于改进DeepLabv3+的含噪声热红外图像光伏热斑检测方法[J]. 太阳能学报, 2023, 44(11): 23-30.
CHEN H, ZHANG A, SUN S, et al.Photovoltaic thermal spot detection method with noisy thermal infrared image based on improved DeepLabv3+[J]. Acta energiae solaris sinica, 2023, 44(11): 23-30.
[9] JI S J, LING Q H, HAN F.An improved algorithm for small object detection based on YOLO v4 and multi-scale contextual information[J]. Computers and electrical engineering, 2023, 105: 108490.
[10] WANG W Z, WU B, LYU J N, et al.Regular and small target detection[C]//MultiMedia Modeling: 25th International Conference. Thessaloniki, Greece, 2019.
[11] 王巍, 赵宽, 杨耀权, 等. 基于CSwin的航拍光伏组件红外图像热斑检测方法[J]. 太阳能学报, 2023, 44(10): 142-147.
WANG W, ZHAO K, YANG Y Q, et al.A hotspot detection method for infrared images of aerial photovoltaic modules based on CSwin[J]. Acta energiae solaris sinica, 2023, 44(10): 142-147.
[12] 樊嵘, 马小陆. 面向带钢表面小目标缺陷检测的改进YOLOv7算法[J]. 合肥工业大学学报(自然科学版), 2024, 47(3): 303-308, 316.
FAN R, MA X L.Improved YOLOv7 algorithm for small target defect detection on strip steel surface[J]. Journal of Hefei University of Technology (natural science), 2024, 47(3): 303-308, 316.
[13] 马超伟, 张浩, 马新明, 等. 基于改进YOLOv8的轻量化小麦病害检测方法[J]. 农业工程学报, 2024, 40(5): 187-195.
MA C W, ZHANG H, MA X M, et al.Method for the lightweight detection of wheat disease using improved YOLOv8[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(5): 187-195.
[14] 赵陆阳, 刘长良, 刘卫亮, 等. 基于CBAM-DSC-UNet模型的时空风速预测算法[J]. 太阳能学报, 2024, 45(10): 497-505.
ZHAO L Y, LIU C L, LIU W L, et al.Spatio-temporal wind speed prediction algorithm based on CBAM-DSC-UNet model[J]. Acta energiae solaris sinica, 2024, 45(10): 497-505.
[15] 李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的合成孔径声纳图像感兴趣小目标检测方法[J]. 电子学报, 2024, 52(3): 762-771.
LI B Q, HUANG H N, LIU J Y, et al.Interested small target detection method based on improved SSD for synthetic aperture sonar image[J]. Acta electronica sinica, 2024, 52(3): 762-771.
[16] 刘传洋, 吴一全, 刘景景. 基于视觉的输电线路金具锈蚀缺陷检测方法研究进展[J]. 仪器仪表学报, 2024, 45(3): 286-305.
LIU C Y, WU Y Q, LIU J J.Research progress of vision-based rust defect detection methods for metal fittings in transmission lines[J]. Chinese journal of scientific instrument, 2024, 45(3): 286-305.
[17] 丁习文, 程宏昌, 袁渊, 等. 基于改进SSD算法的紫外像增强器视场瑕疵检测方法[J]. 兵工学报, 2024, 45(12): 4350-4363.
DING X W, CHENG H C, YUAN Y, et al.Detection method for field-of-view defect of ultraviolet image intensifier based on improved SSD algorithm[J]. Acta armamentarii, 2024, 45(12): 4350-4363.
[18] 王金鹏, 何萌, 甄乾广, 等. 基于COF-YOLO v8n的油茶果静、动态检测计数[J]. 农业机械学报, 2024, 55(4): 193-203.
WANG J P, HE M, ZHEN Q G, et al.Camellia oleifera fruit static and dynamic detection counting based on improved COF-YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(4): 193-203.
[19] 王安静, 袁巨龙, 朱勇建, 等. 基于改进YOLOv8s的鼓形滚子表面缺陷检测算法[J]. 浙江大学学报(工学版), 2024, 58(2): 370-380, 387.
WANG A J, YUAN J L, ZHU Y J, et al.Drum roller surface defect detection algorithm based on improved YOLOv8s[J]. Journal of Zhejiang University (engineering science), 2024, 58(2): 370-380, 387.
PDF(5132 KB)

Accesses

Citation

Detail

Sections
Recommended

/