ASSESSMENT OF COMPLEMENTARITY OF WIND, SOLAR AND WAVE ENERGY AT SEA IN CHINA

Ren Guorui, Yan Xuchen, Wang Wei, Wan Jie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 369-378.

PDF(7858 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7858 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 369-378. DOI: 10.19912/j.0254-0096.tynxb.2024-0916

ASSESSMENT OF COMPLEMENTARITY OF WIND, SOLAR AND WAVE ENERGY AT SEA IN CHINA

  • Ren Guorui1, Yan Xuchen1, Wang Wei1, Wan Jie2
Author information +
History +

Abstract

On the basis of evaluating the potential of offshore wind, solar and wave energy resources in China, the complementarity assessing index for multiple renewable energy resources are defined and applied to assess the complementarity of wind, solar and wave energy resources. Meanwhile, the installed capacity ratios are optimized to obtain the optimum complementarity effects. Analysis results reveal that the wind, solar, and wave energy resources are abundant over sea areas in China and show complementarity potential. In most areas of Bohai Sea, Yellow Sea and South China Sea, the complementarity of wind-solar-wave hybrid energy system is larger than the complementarity between two renewable energy resources. Compared with wind-solar, wind-wave, and solar-wave hybrid energy system, the synthetic fluctuation index of power output of wind-solar-wave hybrid energy system is reduced by 86.0%, 38.5%, and 10.4%, respectively.

Key words

wind energy / solar energy / wave energy / sea areas / multi-energy complementarity / complementarity assessment

Cite this article

Download Citations
Ren Guorui, Yan Xuchen, Wang Wei, Wan Jie. ASSESSMENT OF COMPLEMENTARITY OF WIND, SOLAR AND WAVE ENERGY AT SEA IN CHINA[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 369-378 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0916

References

[1] MALLAPATY S.How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
[2] FARRET F A, SIMÕES M G. Integration of alternative sources of energy[M]. Piscataway: Hoboken, N. J: IEEE Press; Wiley-Interscience, 2006.
[3] FERRARI F, BESIO G, CASSOLA F, et al.Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea[J]. Energy, 2020, 190: 116447.
[4] SOUKISSIAN T H, KARATHANASI F E, ZARAGKAS D K.Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data[J]. Energy conversion and management, 2021, 237: 114092.
[5] RUSU L, GANEA D, MEREUTA E.A joint evaluation of wave and wind energy resources in the Black Sea based on 20-year hindcast information[J]. Energy exploration & exploitation, 2018, 36(2): 335-351.
[6] NETO P B L, SAAVEDRA O R, OLIVEIRA D Q. The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids[J]. Renewable energy, 2020, 147: 339-355.
[7] 黄俊辉, 孙文涛, 李辰, 等. 基于WRF模式的海上风能资源特性分析及评价[J]. 太阳能学报, 2021, 42(7): 278-283.
HUANG J H, SUN W T, LI C, et al.Analysis and evaluation of offshore wind energy resources characteristics based on WRF model[J]. Acta energiae solaris sinica, 2021, 42(7): 278-283.
[8] 吴亚楠, 周庆伟, 武贺, 等. 中国近海太阳能资源特征分析及储量评估[J]. 太阳能学报, 2023, 44(12): 162-169.
WU Y N, ZHOU Q W, WU H, et al.Characteristics analysis and reserve evaluation of offshore solar energy resources in China[J]. Acta energiae solaris sinica, 2023, 44(12): 162-169.
[9] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6): 1711-1716.
JIANG B, DING J, WU H, et al.Wave energy resource assessment along Bohai Sea, Yellow Sea and East China Sea[J]. Acta energiae solaris sinica, 2017, 38(6): 1711-1716.
[10] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[11] 丁杰, 吴国伟, 杜敏, 等. 基于ERA-Interim再分析数据的南海波浪能资源评估[J]. 太阳能学报, 2022, 43(9): 424-429.
DING J, WU G W, DU M, et al.Evaluation of wave energy resouces in South China Sea based on re-analyzed data of ERA-Interim[J]. Acta energiae solaris sinica, 2022, 43(9): 424-429.
[12] ZHANG Y X, ZHAO Y J, SUN W, et al.Ocean wave energy converters: Technical principle, device realization, and performance evaluation[J]. Renewable and sustainable energy reviews, 2021, 141: 110764.
[13] MWASILU F, JUNG J W.Potential for power generation from ocean wave renewable energy source: a comprehensive review on state-of-the-art technology and future prospects[J]. IET renewable power generation, 2019, 13(3): 363-375.
[14] 刘怡, 肖立业, Haifeng WANG, 等. 中国广域范围内大规模太阳能和风能各时间尺度下的时空互补特性研究[J]. 中国电机工程学报, 2013, 33(25): 20-26, 6.
LIU Y, XIAO L Y, HAIFENG W, et al.Temporospatial complementarities between China’s wide-area wind and solar energy at different time scales[J]. Proceedings of the CSEE, 2013, 33(25): 20-26, 6.
[15] XU L J, WANG Z W, LIU Y F.The spatial and temporal variation features of wind-sun complementarity in China[J]. Energy conversion and management, 2017, 154: 138-148.
[16] SUN Y W, LI Y, WANG R, et al.Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity[J]. Energy, 2023, 279: 128106.
[17] GONZALEZ-SALAZAR M, POGANIETZ W R.Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America[J]. Renewable energy, 2021, 174: 453-467.
[18] ONEA F, RUSU E.An evaluation of marine renewable energy resources complementarity in the Portuguese nearshore[J]. Journal of marine science and engineering, 2022, 10(12): 1901.
[19] JURASZ J, CANALES F A, KIES A, et al.A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions[J]. Solar energy, 2020, 195: 703-724.
[20] REN G R, WANG W, WAN J, et al.A novel metric for assessing wind and solar power complementarity based on three different fluctuation states and corresponding fluctuation amplitudes[J]. Energy conversion and management, 2023, 278: 116721.
[21] DE SOUZA NASCIMENTO M M, SHADMAN M, SILVA C, et al. Offshore wind and solar complementarity in Brazil: a theoretical and technical potential assessment[J]. Energy conversion and management, 2022, 270: 116194.
[22] KARDAKARIS K, BOUFIDI I, SOUKISSIAN T.Offshore wind and wave energy complementarity in the Greek Seas based on ERA5 data[J]. Atmosphere, 2021, 12(10): 1360.
[23] 王传辉, 申彦波, 姚锦烽, 等. 3种再分析资料在太阳能资源评估中的适用性[J]. 太阳能学报, 2022, 43(8): 164-173.
WANG C H, SHEN Y B, YAO J F, et al.Applicability of three reanalysis data in assessment of solar energy resources in China[J]. Acta energiae solaris sinica, 2022, 43(8): 164-173.
[24] DE ASSIS TAVARES L F, SHADMAN M, DE FREITAS ASSAD L P, et al. Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions[J]. Energy, 2020, 196: 117097.
[25] COSTOYA X, DECASTRO M, CARVALHO D, et al.Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula[J]. Renewable and sustainable energy reviews, 2022, 157: 112037.
[26] OLAUSON J.ERA5: The new champion of wind power modelling?[J]. Renewable energy, 2018, 126: 322-331.
[27] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
[28] GB/T 37526—2019, 太阳能资源评估方法[S].
GB/T 37526—2019, Assessment method for solar energy resource[S].
[29] GB/T 34910.3—2017, 海洋可再生能源资源调查与评估指南第3部分:波浪能[S].
GB/T 34910.3—2017, Guidelines for marine renewable energy resources survey and assessment: Part 3: Wave energy[S].
[30] BAUER L.Vestas v164-8.0-8.00 mw - wind turbine[EB/OL]. https://en.wind-turbine-models.com/turbines/318-vestas-v164-8.0
[31] BAILEY B H, MCDONALD S L, BERNADETT D W, et al.Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program[R/OL]. https://digital.library.unt.edu/ark:/67531/metadc676865/m2/1/high_res_d/486127.pdf
[32] JUNG C, SCHINDLER D.The role of air density in wind energy assessment-A case study from Germany[J]. Energy, 2019, 171: 385-392.
[33] REN G R, WAN J, LIU J F, et al.Spatial and temporal assessments of complementarity for renewable energy resources in China[J]. Energy, 2019, 177: 262-275.
[34] 谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 36(8): 113-120.
XIE D, GU Y J, YU Z W, et al.Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of hydroelectric engineering, 2017, 36(8): 113-120.
[35] QIU S Q, LIU K, WANG D J, et al.A comprehensive review of ocean wave energy research and development in China[J]. Renewable and sustainable energy reviews, 2019, 113: 109271.
[36] JAHANGIR M H, ALIMOHAMADI R, MONTAZERI M.Performance comparison of pelamis, wavestar, langley, oscillating water column and Aqua Buoy wave energy converters supplying islands energy demands[J]. Energy reports, 2023, 9: 5111-5124.
[37] O’CONNOR M, LEWIS T, DALTON G. Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe[J]. Renewable energy, 2013, 50: 889-900.
[38] WAVE STAR.Wavestar prototype at Roshage[Z/OL] https://wavestarenergy.com/wp-content/uploads/2022/10/wavestar-prototype-at-roshage-performance-data-for-forskve-project-no-..pdf
PDF(7858 KB)

Accesses

Citation

Detail

Sections
Recommended

/