MODELING METHOD FOR ANNUAL WIND POWER OUTPUT SEQUENCE TAKING INTO ACCOUNT RAMPING CHARACTERISTICS

Zhang Rui, Chen Haoxuan, Zhang Lizi, Huang Xianchao, Wang Yun, Tian Hongjie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 570-580.

PDF(2443 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2443 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 570-580. DOI: 10.19912/j.0254-0096.tynxb.2024-0917

MODELING METHOD FOR ANNUAL WIND POWER OUTPUT SEQUENCE TAKING INTO ACCOUNT RAMPING CHARACTERISTICS

  • Zhang Rui1, Chen Haoxuan1, Zhang Lizi1, Huang Xianchao1, Wang Yun2, Tian Hongjie3
Author information +
History +

Abstract

To address the issue of inadequate long-term flexible adjustment capacity caused by the frequent occurrence of wind power ramping events in the new power system, a modeling method for the annual output sequence of wind power considering the ramping characteristics is proposed. This method enhances the precision of system flexibility assessment over medium- and long-term time horizons, thereby providing guidance for the planning and development of flexibility resources. Initially, wind power ramping segments are meticulously filtered and extracted using the Spinning Door algorithm and the Four-Point method. Subsequently, the daily wind power output ramping characteristic indices are identified by analyzing the morphology and distribution properties of these ramping segments. With these indices in hand, the K-medoids clustering algorithm and kernel density estimation are employed to establish a probabilistic distribution model for the daily wind power output ramping features. This enables the generation of a daily wind power output sequence that encapsulates both ramping characteristics and time series attributes, achieved through Monte Carlo sampling and sequence optimization techniques. In the final step, the Markov Chain Monte Carlo (MCMC) method is utilized to simulate the impact of meteorological conditions on the transition characteristics between daily wind power output sequences, thereby creating annual wind power output sequences that accurately reflect both the stochastic nature and ramping characteristics of wind power. The simulation is grounded in wind power output data from a province in Northwest China. The resultant annual wind power output sequences are then applied to assess the long-term flexibility of the system, validating the efficacy and practical applicability of the proposed methodology.

Key words

wind power / power system planning / cluster analysis / ramping characteristics / flexibility assessment

Cite this article

Download Citations
Zhang Rui, Chen Haoxuan, Zhang Lizi, Huang Xianchao, Wang Yun, Tian Hongjie. MODELING METHOD FOR ANNUAL WIND POWER OUTPUT SEQUENCE TAKING INTO ACCOUNT RAMPING CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 570-580 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0917

References

[1] 《新型电力系统发展蓝皮书》编写组.新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023, 16-17.
Blue book on the development of new electric power systems. Blue book of new power system development[M]. Beijing: China Electric Power Press, 2023, 16-17.
[2] 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. 2025-06-05. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
NATIONAL ENERGY ADMINISTRATION. Grid-connected operation of renewable energy in2024 [EB/OL]. 2025-06-05. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
[3] NAVID N, ROSENWALD G.Market solutions for managing ramp flexibility with high penetration of renewable resource[J]. IEEE transactions on sustainable energy, 2012, 3(4): 784-790.
[4] 李海波, 鲁宗相, 乔颖, 等. 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39(6): 1672-1678.
LI H B, LU Z X, QIAO Y, et al.Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power system technology, 2015, 39(6): 1672-1678.
[5] 杨茂, 刘红柳. 超短期风电功率爬坡事件对风电功率实时预测误差的影响研究[J]. 太阳能学报, 2017, 38(3): 571-577.
YANG M, LIU H L.Ultra-short-term wind power climbing event research on the effect of wind power real-time prediction error[J]. Acta energiae solaris sinica, 2017, 38(3): 571-577.
[6] SEVLIAN R, RAJAGOPAL R.Detection and statistics of wind power ramps[J]. IEEE transactions on power systems, 2013, 28(4): 3610-3620.
[7] 余洋, 陈东阳, 王卜潇, 等. 基于IBSO-SDT的风电爬坡事件检测方法[J]. 太阳能学报, 2023, 44(9): 348-355.
YU Y, CHEN D Y, WANG B X, et al.Wind power ramp event detection method based on IBSO-SDT[J]. Acta energiae solaris sinica, 2023, 44(9): 348-355.
[8] CUI M J, ZHANG J, FLORITA A R, et al.An optimized swinging door algorithm for identifying wind ramping events[J]. IEEE transactions on sustainable energy, 2016, 7(1): 150-162.
[9] 黄棋悦, 严楠, 钟旭佳. 基于生成对抗网络的风电爬坡功率预测[J]. 太阳能学报, 2023, 44(1): 226-231.
HUANG Q Y, YAN N, ZHONG X J.Wind power ramping events prediction based on generative adversarial network[J]. Acta energiae solaris sinica, 2023, 44(1): 226-231.
[10] ZHAO Y C, ZHU W L, YANG M, et al.Bayesian network based imprecise probability estimation method for wind power ramp events[J]. Journal of modern power systems and clean energy, 2021, 9(6): 1510-1519.
[11] 乔妍, 韩丽, 李梦洁. 基于爬坡特征和云模型的风电功率预测误差区间评估[J]. 电力系统自动化, 2022, 46(11): 75-84.
QIAO Y, HAN L, LI M J.Interval estimation of wind power forecasting error based on ramp features and cloud model[J]. Automation of electric power systems, 2022, 46(11): 75-84.
[12] 李辉, 任洲洋, 胡博, 等. 基于时序生成对抗网络的月度风光发电功率场景分析方法[J]. 中国电机工程学报, 2022, 42(2): 537-548.
LI H, REN Z Y, HU B, et al.A sequential generative adversarial network based monthly scenario analysis method for wind and photovoltaic power[J]. Proceedings of the CSEE, 2022, 42(2): 537-548.
[13] 辛阔, 马骞, 许琴, 等. 基于月份划分与指定日类型的风电出力序列场景生成方法[J]. 电力系统自动化, 2023, 47(15): 151-161.
XIN K, MA Q, XU Q, et al.Wind power output sequence scenario generation method based on monthly division and specified day type[J]. Automation of electric power systems, 2023, 47(15): 151-161.
[14] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36(15): 4064-4072.
DING M, XIE J L, LIU X Y, et al.The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36(15): 4064-4072.
[15] 于鹏, 黎静华, 文劲宇, 等. 含风电功率时域特性的风电功率序列建模方法[J]. 中国电机工程学报, 2014, 34(22): 3715-3723.
YU P, LI J H, WEN J Y, et al.A wind power time series modeling method based on its time domain characteristics[J]. Proceedings of the CSEE, 2014, 34(22): 3715-3723.
[16] 董骁翀, 张姝, 李烨, 等. 电力系统中时序场景生成和约简方法研究综述[J]. 电网技术, 2023, 47(2): 709-721.
DONG X C, ZHANG S, LI Y, et al.Review of power system temporal scenario generation and reduction methods[J]. Power system technology, 2023, 47(2): 709-721.
[17] LI J H, ZHOU J S, CHEN B.Review of wind power scenario generation methods for optimal operation of renewable energy systems[J]. Applied energy, 2020, 280: 115992.
[18] 曲凯, 李湃, 黄越辉, 等. 面向新能源消纳能力评估的年负荷序列建模及场景生成方法[J]. 电力系统自动化, 2021, 45(1): 123-131.
QU K, LI P, HUANG Y H, et al.Modeling and scenario generation method of annual load series for evaluation of renewable energy accommodation capacity[J]. Automation of electric power systems, 2021, 45(1): 123-131.
[19] 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42(6): 1783-1792.
ZHANG D Y, DAI Y, ZHANG X, et al.Review and prospect of research on wind power ramp events[J]. Power system technology, 2018, 42(6): 1783-1792.
[20] 匡洪海, 王建辉, 张瀚超, 等. 一种新型的风电功率爬坡段识别方法[J]. 电网技术, 2019, 43(5): 1752-1759.
KUANG H H, WANG J H, ZHANG H C, et al.A novel wind power climbing section identification method[J]. Power system technology, 2019, 43(5): 1752-1759.
[21] LI D, YAN W, LI W Y, et al.A two-tier wind power time series model considering day-to-day weather transition and intraday wind power fluctuations[J]. IEEE transactions on power systems, 2016, 31(6): 4330-4339.
[22] 黄越辉, 曲凯, 李驰, 等. 基于K-means MCMC算法的中长期风电时间序列建模方法研究[J]. 电网技术, 2019, 43(7): 2469-2476.
HUANG Y H, QU K, LI C, et al.Research on modeling method of medium-and long-term wind power time series based on K-means MCMC algorithm[J]. Power system technology, 2019, 43(7): 2469-2476.
PDF(2443 KB)

Accesses

Citation

Detail

Sections
Recommended

/