RESEARCH ON LOW-CARBON OPERATION OF INTEGRATED ENERGY SYSTEMS CONSIDERING TWO-STAGE P2G-CCS COUPLING AND SOURCE-LOAD COORDINATION OPTIMIZATION

Deng Dan, Lyu You, Shi Yijun, Li Zeyang, Ji Zhanyang, Liu Jizhen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 390-402.

PDF(2847 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2847 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 390-402. DOI: 10.19912/j.0254-0096.tynxb.2024-0927

RESEARCH ON LOW-CARBON OPERATION OF INTEGRATED ENERGY SYSTEMS CONSIDERING TWO-STAGE P2G-CCS COUPLING AND SOURCE-LOAD COORDINATION OPTIMIZATION

  • Deng Dan1,2, Lyu You1,2, Shi Yijun2, Li Zeyang2, Ji Zhanyang1,2, Liu Jizhen1,2
Author information +
History +

Abstract

To solve the collaborative optimization problem of source-side energy supply coupling conversion and load-side energy demand transfer substitution under various energy sources, this paper proposes a source-load collaborative optimal scheduling model for an electricity-heat-gas-hydrogen-storage system under a tiered carbon trading mechanism and multi-energy demand response conditions. Firstly, based on the energy flow model, a flexible response model is proposed on the source side, constructing a hydrogen-mixed combined heat and power unit model with an adjustable heat-to-power ratio, and utilizing a two-stage power-to-gas process for dual-layer energy optimization. Secondly, on the load side, considering the characteristics of flexible loads, a spatio-temporal two-dimensional multi-energy demand response model is established under a tiered carbon trading mechanism. Finally, by handling uncertainties using the Frank-SJC-Copula, renewable energy output and multi-energy load forecasting curves are obtained. A day-ahead scheduling model is established with the objective of minimizing the total operating cost of the system, and the feasibility of scheduling under multiple scenarios and multi-energy configurations is verified through case studies based on time-of-use electricity and gas prices. The results show that the proposed electricity-heat-gas-hydrogen-storage collaborative optimization model can effectively optimize the system’s low-carbon and economic performance and reduce wind and solar curtailment.

Key words

integrated energy system / optimal scheduling / power-to-gas / demand response

Cite this article

Download Citations
Deng Dan, Lyu You, Shi Yijun, Li Zeyang, Ji Zhanyang, Liu Jizhen. RESEARCH ON LOW-CARBON OPERATION OF INTEGRATED ENERGY SYSTEMS CONSIDERING TWO-STAGE P2G-CCS COUPLING AND SOURCE-LOAD COORDINATION OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 390-402 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0927

References

[1] 王永真, 张宁, 关永刚, 等. 当前能源互联网与智能电网研究选题的继承与拓展[J]. 电力系统自动化, 2020, 44(4): 1-7.
WANG Y Z, ZHANG N, GUAN Y G, et al.Inheritance and expansion analysis of research topics between energy Internet and smart grid[J]. Automation of electric power systems, 2020, 44(4): 1-7.
[2] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical form and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[3] WANG L Y, LIN J L, DONG H Q, et al.Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system[J]. Energy, 2023, 270: 126893.
[4] 刘吉臻. 支撑新型电力系统建设的电力智能化发展路径[J]. 能源科技, 2022, 20(4): 3-7.
LIU J Z.Development path of power intelligence supporting the construction of new power system[J]. Energy science and technology, 2022, 20(4): 3-7.
[5] 张红昌, 薛小军, 徐钢, 等. 热电联产机组热电解耦改造方案的调峰特性及能耗分析[J]. 动力工程学报, 2023, 43(10): 1382-1390.
ZHANG H C, XUE X J, XU G, et al.Peak shaving characteristics and energy consumption analysis of the thermoelectric-decoupling retrofit scheme for cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2023, 43(10): 1382-1390.
[6] 张艺晨, 杨勇平, 戈志华, 等. 基于能量梯级利用的高效灵活供热系统性能研究[J]. 动力工程学报, 2023, 43(8): 1085-1094.
ZHANG Y C, YANG Y P, GE Z H, et al.Performance study of an efficient and flexible heating system based on cascade use of energy[J]. Journal of Chinese Society of Power Engineering, 2023, 43(8): 1085-1094.
[7] 蒋超凡, 艾欣. 计及多能耦合机组不确定性的综合能源系统运行优化模型研究[J]. 电网技术, 2019, 43(8): 2843-2854.
JIANG C F, AI X.Integrated energy system operation optimization model considering uncertainty of multi-energy coupling units[J]. Power system technology, 2019, 43(8): 2843-2854.
[8] ZHANG X, ZHANG Y M, JI X Q, et al.Unit commitment of integrated energy system considering conditional value-at-risk and P2G[J]. Electric power systems research, 2023, 221: 109398.
[9] CHEN J J, QI B X, RONG Z K, et al.Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement[J]. Energy, 2021, 217: 119387.
[10] ZHOU Y F, HU W, MIN Y, et al.Integrated power and heat dispatch considering available reserve of combined heat and power units[J]. IEEE transactions on sustainable energy, 2019, 10(3): 1300-1310.
[11] 喻鑫, 胡志坚, 陈锦鹏, 等. 阶梯碳下考虑P2G-CCS与供需灵活响应的IES优化调度[J]. 武大学学报(工学版), 2024, 57(10): 1360-1371.
YU X, HU Z J, CHEN J P, et al.Optimal dispatch of integrated energy system considering P2G-CCS and supply-demand flexible response under stepped carbon[J]. Engineering journal of Wuhan University, 2024, 57(10): 1360-1371.
[12] 李兴国, 任永峰, 孟庆天, 等. 考虑可控负荷的含CSP和P2G的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(12): 552-559.
LI X G, REN Y F, MENG Q T, et al.Optimal scheduling of integrated energy system with CSP and P2G considering controllable load[J]. Acta energiae solaris sinica, 2023, 44(12): 552-559.
[13] ZHANG X P, ZHANG Y Z.Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant[J]. Journal of cleaner production, 2020, 276: 123348.
[14] LUO Z, WANG J H, XIAO N, et al.Low carbon economic dispatch optimization of regional integrated energy systems considering heating network and P2G[J]. Energies, 2022, 15(15): 5494.
[15] YU W A N G, KE L I, SHUZHEN L I, et al. A bi-level scheduling strategy for integrated energy systems considering integrated demand response and energy storage co-optimization[J]. Journal of energy storage, 2023, 66: 107508.
[16] HE S J, GAO H J, WANG L F, et al.Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response[J]. Energy, 2020, 213: 118783.
[17] 陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9): 3094-3106.
CHEN J P, HU Z J, CHEN J B, et al.Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible double response of supply and demand[J]. High voltage engineering, 2021, 47(9): 3094-3106.
[18] GUO Z H, ZHANG R, WANG L, et al.Optimal operation of regional integrated energy system considering demand response[J]. Applied thermal engineering, 2021, 191: 116860.
[19] 李亚峰, 王维庆, 寇洋, 等. 考虑绿证-碳联合交易与需求响应综合能源系统经济运行[J]. 太阳能学报, 2023, 44(11): 538-546.
LI Y F, WANG W Q, KOU Y, et al.Considering green certificate-carbon joint trading and demand response integrated energy system economic operation[J]. Acta energiae solaris sinica, 2023, 44(11): 538-546.
[20] 李虹, 林兰心, 赵小军. 基于需求侧用户响应分析的电-气-热综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(5): 97-105.
LI H, LIN L X, ZHAO X J.Low carbon economic scheduling of electricity-gas-heat integrated energy system based on demand-side user response analysis[J]. Acta energiae solaris sinica, 2023, 44(5): 97-105.
[21] 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9): 148-155.
CHEN Z, HU Z J, WENG C H, et al.Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric power automation equipment, 2021, 41(9): 148-155.
[22] 赵继超, 袁越, 傅质馨, 等. 基于Copula理论的风光互补发电系统可靠性评估[J]. 电力自动化设备, 2013, 33(1): 124-129.
ZHAO J C, YUAN Y, FU Z X, et al.Reliability assessment of wind-PV hybrid generation system based on Copula theory[J]. Electric power automation equipment, 2013, 33(1): 124-129.
[23] GAO J W, MENG Q C, LIU J T, et al.Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading[J]. Renewable energy, 2024, 221: 119806.
[24] LYU Y, SHI Y J, LI Z Y, et al.Short-term load forecasting method of IES based on RLA neural network with dual signal processing[J]. Energy and buildings, 2024, 309: 114074.
[25] 张新鹤, 黄伟, 刘铠诚, 等. 基于综合需求响应的气-电联合分时定价优化模型[J]. 电力系统及其自动化学报, 2019, 31(4): 91-98.
ZHANG X H, HUANG W, LIU K C, et al.Optimal combined gas-electricity time-of-use pricing model based on integrated demand response[J]. Proceedings of the CSU-EPSA, 2019, 31(4): 91-98.
[26] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO H P, MIAO S H, LI C, et al.Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[27] 邱彬, 杨瑞雪, 王凯, 等. 考虑源-荷灵活协调响应的综合能源系统两阶段鲁棒优化[J]. 电力系统及其自动化学报, 2025, 37(1): 43-53, 63.
QIU B, YANG R X, WANG K, et al.Two-stage robust optimization of integrated energy system considering flexible source-load coordinated response[J]. Proceedings of the CSU-EPSA, 2025, 37(1): 43-53, 63.
PDF(2847 KB)

Accesses

Citation

Detail

Sections
Recommended

/