NUMERICAL SIMULATION STUDY ON EFFECT OF TYPHOON MUIFA ON SEABED EVOLUTION OF OFFSHORE WIND FARM

Tang Chunsheng, Mai Zijun, Shen Liangduo

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 522-530.

PDF(3589 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3589 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 522-530. DOI: 10.19912/j.0254-0096.tynxb.2024-0930

NUMERICAL SIMULATION STUDY ON EFFECT OF TYPHOON MUIFA ON SEABED EVOLUTION OF OFFSHORE WIND FARM

  • Tang Chunsheng1, Mai Zijun2, Shen Liangduo3
Author information +
History +

Abstract

In this paper, the typhoon Muifa (No. 2212) was selected as a case study. A three-way coupled hydrodynamic-wave-sediment numerical simulation was conducted using a finite element numerical model. This simulation involved the use of large-and-small-scale-nested models within an offshore wind farm site located in Jiangsu. The objective was to calculate the evolution trend of the seabed under the influence of storm surges and waves caused by the typhoon. The results demonstrate that the extent of scouring and siltation of the seabed in the site area under the influence of the typhoon is more pronounced than that under the no-typhoon scenario. During its passage, the typhoon enhances the transport of solid materials on the seabed. The use of numerical simulation allows for the analysis and prediction of the trend of sediment scouring and siltation caused by typhoons on the seabed. This provides a scientific basis for the monitoring and prediction of seabed scouring, as well as for the safety guarantee and predictive operation and maintenance of offshore wind farms.

Key words

offshore wind power / storm surge / hydrodynamics / erosion and deposition sedimentation / seabed evolution

Cite this article

Download Citations
Tang Chunsheng, Mai Zijun, Shen Liangduo. NUMERICAL SIMULATION STUDY ON EFFECT OF TYPHOON MUIFA ON SEABED EVOLUTION OF OFFSHORE WIND FARM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0930

References

[1] 蒋海波, 刘长栋. 我国海上风电发展现状研究及平价发展建议[J]. 煤质技术, 2021, 36(6): 70-76.
JIANG H B, LIU C D.Research on the development of offshore wind power in China and suggestions for parity development[J]. Coal quality technology, 2021, 36(6): 70-76.
[2] 徐海根. 上海市海岛资源综合调查报告:潮间带沉积地貌[M]. 上海: 上海市科学技术出版社, 1996.
XU H G.Report on the comprehensive survey of Shanghai Island Resources: Intertidal Sedimentary Geomorphology[M]. Shanghai: Shanghai Science and Technology Press. 1996.
[3] FENG X B, ZHENG J H, YAN Y X.Wave spectra assimilation in typhoon wave modeling for the East China Sea[J]. Coastal engineering, 2012, 69: 29-41.
[4] 刘俊伟, 吕伟, 于秀霞. 台风环境中海上风电管桩基础动响应特性研究述评[J]. 水利与建筑工程学报, 2022, 20(1): 1-7.
LIU J W, LYU W, YU X X.Review on dynamic response characteristics of offshore wind turbine pipe pile foundation in typhoon environment[J]. Journal of water resources and architectural engineering, 2022, 20(1): 1-7.
[5] 张天翼, 李昕, 王文华. 地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究[J]. 太阳能学报, 2022, 43(10): 243-251.
ZHANG T Y, LI X, WANG W H.Research of coupling mechanismes of offshore wind turbine integrated with mariculture under earthquake, wind and wave loads[J]. Acta energiae solaris sinica, 2022, 43(10): 243-251.
[6] CHOU J S, TU W T.Failure analysis and risk management of a collapsed large wind turbine tower[J]. Engineering failure analysis, 2011, 18(1): 295-313.
[7] 邱旭, 马文冠, 姚中原, 等. 基于实测的海上风电基础局部冲刷及防护措施效果对比研究[J]. 太阳能学报, 2023, 44(12): 230-237.
QIU X, MA W G, YAO Z Y, et al.Comparative study on effect of local scour and protective measures of offshore wind power foundation based on field measurement[J]. Acta energiae solaris sinica, 2023, 44(12): 230-237.
[8] 邱旭, 马文冠, 张宇, 等. 海上风电场单桩基础局部冲刷深度计算方法适应性研究[J]. 太阳能学报, 2023, 44(11): 287-293.
QIU X, MA W G, ZHANG Y, et al.Study on adaptability of calculation method for local scouring depth of single pile foundation in offshore wind farm[J]. Acta energiae solaris sinica, 2023, 44(11): 287-293.
[9] 胡克林, 丁平兴, 朱首贤, 等. 长江口附近海域台风浪的数值模拟: 以鹿沙台风和森拉克台风为例[J]. 海洋学报, 2004, 26(5): 23-33.
HU K L, DING P X, ZHU S X, et al.Numerical simulation of typhoon waves around the waters of the Changjiang EstuaryA case study of Typhoon Rusa and Typhoon Sinlaku[J]. Acta oceanologica sinica, 2004, 26(5): 23-33.
[10] 荆亚涛, 刘东海. 广东某海上风电场利用台风气象数据推算波浪要素的研究[J]. 新型工业化, 2022, 12(5): 23-25, 29.
JING Y T, LIU D H.Study on the calculation of wave elements from typhoon meteorological data in an offshore wind farm in Guangdong Province[J]. The journal of new industrialization, 2022, 12(5): 23-25, 29.
[11] 戴志军, 张小玲, 闫虹, 等. 台风作用下淤泥质海岸动力地貌响应[J]. 海洋工程, 2009, 27(2): 63-69, 95.
DAI Z J, ZHANG X L, YAN H, et al.Morphodynamic behavior of the mud coast in response to typhoon action[J]. The ocean engineering, 2009, 27(2): 63-69, 95.
[12] 蔡锋, 雷刚, 苏贤泽, 等. 台风“艾利” 对福建沙质海滩影响过程研究[J]. 海洋工程, 2006, 24(1): 98-109.
CAI F, LEI G, SU X Z, et al.Study on process response of Fujian beach geomorphology to typhoon Aere[J]. The ocean engineering, 2006, 24(1): 98-109.
[13] 杨世伦, 丁平兴, 赵庆英. 开敞大河口滩槽冲淤对台风的响应及其动力泥沙机制探讨: 以长江口南汇边滩-南槽-九段沙系统为例[J]. 海洋工程, 2002, 20(3): 69-75.
YANG S L, DING P X, ZHAO Q Y.Morphodynamic response of a large river mouth to typhoons[J]. The ocean engineering, 2002, 20(3): 69-75.
[14] 刘柄麟. 南黄海辐射沙脊群东沙滩短尺度地貌演变过程研究[D]. 上海: 上海师范大学, 2018.
LIU B L.Study on short-scale geomorphological evolution process of the eastern beach of the radial sand ridge group in the South Yellow Sea[D]. Shanghai: Shanghai Normal University, 2018.
[15] 吴曙亮, 蔡则健. 江苏省沿海沙洲及潮汐水道演变遥感分析[J]. 国土资源遥感, 2002, 14(3): 29-32, 40.
WU S L, CAI Z J.Remote sensing analysis of the coastal shoal and tidal inlet development in Jiangsu Province[J]. Remote sensing for land & resources, 2002, 14(3): 29-32, 40.
[16] 刘涛, 陈学恩, 陈子健. 不同参数模型对南黄海典型台风的适用性研究[J]. 海洋湖沼通报, 2022, 44(2): 8-16.
LIU T, CHEN X E, CHEN Z J.A study on the applicability of different models to typical typhoons in the South Yellow Sea[J]. Transactions of oceanology and limnology, 2022, 44(2): 8-16.
[17] 李茜, 段忠东. Shapiro台风风场模型及其数值模拟[J]. 自然灾害学报, 2005, 14(1): 45-52.
LI Q, DUAN Z D.Shapiro typhoon wind-field model and its numerical simulation[J]. Journal of natural disasters, 2005, 14(1): 45-52.
[18] JELESNIANSKI C P.Numerical computations of storm surges without bottom stress[J]. Monthly weather review, 1966, 94(6): 379.
[19] BENOIT M, MARCOS F, BECQ F.Development of a third generation shallow-water wave model with unstructured spatial meshing[C]//Coastal Engineering 1996. Orlando, Florida, USA, 1997: 465-478.
[20] PRODANOVIC P.Wave library: A strategy for reducing computation times in coastal sediment transport studies[C]//Proceedings of the 23rd TELEMAC-MASCARET User Conference. Paris, France, 2016.
[21] SAHA S, MOORTHI S, PAN H-L, et al.The NCEP climate forecast system reanalysis[J]. Bulletin of the American meteorological society, 2010, 91(8): 1015-1058.
[22] 中央气象台.中央气象台台风网v3. typhoon.nmc.cn
Central Meteorological Office.Central Meteorological Office Typhoon website v3. typhoon.nmc.cn
[23] EGBERT G D, BENNETT A F, FOREMAN M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of geophysical research: oceans, 1994, 99(C12): 24821-24852.
[24] YING M, ZHANG W, YU H, et al.An overview of the China meteorological administration tropical cyclone database[J]. Journal of atmospheric and oceanic technology, 2014, 31(2): 287-301.
[25] LU X Q, YU H, YING M, et al.Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in atmospheric sciences, 2021, 38(4): 690-699.
PDF(3589 KB)

Accesses

Citation

Detail

Sections
Recommended

/