SUPER TWISTING SLIDING MODE VF CONTROL STRATEGY FOR PHOTOVOLTAIC-STORAGE-CHARGING MICROGRIDS UNDER COMMUNICATION NETWORKS

Zhong Cheng, Li Haoyang, Tan Meng, Zhao Hailong, Li Zhuoxia, Ma Yufei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 412-423.

PDF(14796 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(14796 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 412-423. DOI: 10.19912/j.0254-0096.tynxb.2024-0949

SUPER TWISTING SLIDING MODE VF CONTROL STRATEGY FOR PHOTOVOLTAIC-STORAGE-CHARGING MICROGRIDS UNDER COMMUNICATION NETWORKS

  • Zhong Cheng1,2, Li Haoyang2, Tan Meng3, Zhao Hailong2, Li Zhuoxia2, Ma Yufei2
Author information +
History +

Abstract

This paper proposes a constant voltage and frequency (VF) control strategy for the photovoltaic-storage-charging islanded microgrid under communication network. This strategy is a master-slave control structure,the master controller adopts super twisting sliding mode control (STSMC) to maintain voltage stability. The slave controller adopts sliding mode control (SMC) to transmit and share current data using CAN and ZigBee networks for power distribution. The maximum allowable delay bound (MADB) is calculated using a bisection iterative algorithm, and the effect of time delay greater than MADB on the system is analyzed. The simulation results show that STSMC has smaller control error, shorter response time and stronger anti-delay ability than PI and SMC.

Key words

islanded microgrid / time delay / super-twisting sliding mode control / master-slave control / power distribution / communications network

Cite this article

Download Citations
Zhong Cheng, Li Haoyang, Tan Meng, Zhao Hailong, Li Zhuoxia, Ma Yufei. SUPER TWISTING SLIDING MODE VF CONTROL STRATEGY FOR PHOTOVOLTAIC-STORAGE-CHARGING MICROGRIDS UNDER COMMUNICATION NETWORKS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 412-423 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0949

References

[1] 支娜, 肖曦, 田培根, 等. 微网群控制技术研究现状与展望[J]. 电力自动化设备, 2016, 36(4): 107-115.
ZHI N, XIAO X, TIAN P G, et al.Research and prospect of multi-microgrid control strategies[J]. Electric power automation equipment, 2016, 36(4): 107-115.
[2] 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27(2): 121-127.
LIU X F, ZHANG Q F, CUI S M.Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 121-127.
[3] XU H Z, ZHANG X, LIU F, et al.A reactive power sharing strategy of VSG based on virtual capacitor algorithm[J]. IEEE transactions on industrial electronics, 2017, 64(9): 7520-7531.
[4] OLIVARES D E, MEHRIZI-SANI A, ETEMADI A H, et al.Trends in microgrid control[J]. IEEE transactions on smart grid, 2014, 5(4): 1905-1919.
[5] 朱洋艳, 王致杰, 王鸿, 等. 基于分层控制的微电网混合储能协调优化策略研究[J]. 太阳能学报, 2021, 42(3): 235-242.
ZHU Y Y, WANG Z J, WANG H, et al.Research on hierarchical control of micro power grid hybrid energy storage coordination optimization strategy[J]. Acta energiae solaris sinica, 2021, 42(3): 235-242.
[6] 朱晓荣, 马英乔, 赵澄颢. 基于模型预测控制算法的多风储直流微电网分布式电压二次控制策略[J]. 电力自动化设备, 2021, 41(10): 184-191.
ZHU X R, MA Y Q, ZHAO C H.Distributed voltage secondary control strategy of multi wind-storage DC microgrid based on model predictive control algorithm[J]. Electric power automation equipment, 2021, 41(10): 184-191.
[7] 徐远洋, 王明渝. 低压微电网中新型控制策略研究[J]. 太阳能学报, 2020, 41(9): 70-77.
XU Y Y, WANG M Y.Research on new control strategy in low-voltage microgrid[J]. Acta energiae solaris sinica, 2020, 41(9): 70-77.
[8] SINGH P, LATHER J S.Dynamic current sharing, voltage and SOC regulation for HESS based DC microgrid using CPISMC technique[J]. Journal of energy storage, 2020, 30: 101509.
[9] LEVANT A.Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[10] BARZEGAR-KALASHANI M, TOUSI B, MAHMUD M A, et al.Robust nonlinear sliding mode controllers for single-phase inverter interfaced distributed energy resources based on super twisting algorithms[J]. ISA transactions, 2022, 123: 61-75.
[11] ALFERGANI A, KHALIL A.Modeling and control of master-slave microgrid with communication delay[C]//2017 8th International Renewable Energy Congress (IREC). Amman, Jordan, 2017: 1-6.
[12] ZHANG Y, MA H, ZHAO G Q, et al.A current-sharing method based on networked control for three-phase parallel inverter[C]//IECON 2012: 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada, 2012: 57-61.
[13] 任艺, 王南, 陈艺峰, 等. 基于CAN总线的光伏集散电源控制系统通信网络设计[J]. 控制与信息技术, 2020(5): 94-98.
REN Y, WANG N, CHEN Y F, et al.Communication network design of the control system for central distributed PV system based on CAN bus[J]. Control and information technology, 2020(5): 94-98.
[14] ALFERGANI A, KHALIL A, RAJAB Z.Networked control of AC microgrid[J]. Sustainable cities and society, 2018, 37: 371-387.
[15] CHOUDHARY M K, SHARMA A K.Integration of PV, battery and supercapacitor in islanded microgrid[C]//2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). Patna, India, 2020: 1-6.
[16] 邵嗣杨, 马翔, 袁伟, 等. 含电动汽车的不确定性微电网鲁棒优化调度方法[J]. 电气工程学报, 2023, 18(2): 201-209.
SHAO S Y, MA X, YUAN W, et al.Robust optimal dispatching method for uncertain microgrid including electric vehicles[J]. Journal of electrical engineering, 2023, 18(2): 201-209.
[17] 杨丽君, 杨博, 安立明, 等. 考虑电动汽车响应的光储微电网储能优化配置[J]. 太阳能学报, 2020, 41(4): 340-347.
YANG L J, YANG B, AN L M, et al.Optimal configuration of grid-connected pv-and-storage microgrid considering evs’demand response[J]. Acta energiae solaris sinica, 2020, 41(4): 340-347.
[18] 冯倩, 李志忠, 陈爱鸾. 大功率电动汽车充电电源并联均流技术的研究[J]. 通信电源技术, 2015, 32(4): 5-7.
FENG Q, LI Z Z, CHEN A L.Research of parallel current-sharing technique of high power electric vehicle power supply[J]. Telecom power technology, 2015, 32(4): 5-7.
[19] CHOUDHURY S.Review of energy storage system technologies integration to microgrid: types, control strategies, issues, and future prospects[J]. Journal of energy storage, 2022, 48: 103966.
[20] LANGHAMMER N, KAYS R.Performance evaluation of wireless home automation networks in indoor scenarios[J]. IEEE transactions on smart grid, 2012, 3(4): 2252-2261.
[21] RIZI M T, ELIASI H.Nonsingular terminal sliding mode controller for voltage and current control of an islanded microgrid[J]. Electric power systems research, 2020, 185: 106354.
[22] KHALIL A F, WANG J H.Stability and time delay tolerance analysis approach for networked control systems[J]. Mathematical problems in engineering, 2015, 2015(1): 812070.
[23] WU M, HE Y, SHE J H.Stability Analysis and robust control of time-delay systems[M]. Cham: Springer Berlin Heidelberg, 2010.
[24] KHALIL A, RAJAB Z, ALFERGANI A, et al.The impact of the time delay on the load frequency control system in microgrid with plug-in-electric vehicles[J]. Sustainable cities and society, 2017, 35: 365-377.
[25] KHALIL A, ASHIEBI A, WANG J H.Stability of parallel DC/DC converters with time varying delay[C]//2016 IEEE International Conference on Power System Technology (POWERCON). Wollongong, NSW, Australia, 2016: 1-6.
[26] 晋秉义, 于凯, 李强, 等. 基于超螺旋滑模控制的LCL三相逆变器离网扰动抑制策略[J]. 东北电力大学学报, 2023, 43(5): 43-52.
JIN B Y, YU K, LI Q, et al.Islanded disturbance suppression strategy for LCL three-phase inverter based on super-twisting sliding mode control[J]. Journal of Northeast Electric Power University, 2023, 43(5): 43-52.
[27] 文成馀, 江驹, 余朝军, 等. 高超声速飞行器超螺旋滑模自适应控制[J]. 电光与控制, 2020, 27(2): 1.
WEN C Y, JIANG J, YU C J, et al.Super-twisting sliding mode adaptive control of hypersonic vehicle[J]. Electronics optics & control, 2020, 27(2): 1.
PDF(14796 KB)

Accesses

Citation

Detail

Sections
Recommended

/