NUMERICAL SIMULATION OF NATURAL FREQUENCY OF OFFSHORE WIND TURBINES AND ITS INFLUENCING FACTOR STUDY

Jiang Linfeng, Wu Teng, Wu Yong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 596-604.

PDF(1494 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1494 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 596-604. DOI: 10.19912/j.0254-0096.tynxb.2024-0961

NUMERICAL SIMULATION OF NATURAL FREQUENCY OF OFFSHORE WIND TURBINES AND ITS INFLUENCING FACTOR STUDY

  • Jiang Linfeng1,2, Wu Teng1,3, Wu Yong4
Author information +
History +

Abstract

Field data monitoring and analysis were carried out for a 4 MW offshore wind turbine at a nearshore wind farm in Jiangsu Province. An integrated model of the wind turbine-tower-foundation was established by finite element software and compared with the base-tower model. The models’ reliability was verified based on long-term monitoring data for the project. The effects of structural dimensions, foundation conditions, and wind turbine operating states on the natural frequency of the structure were analyzed based on the integrated model. The results show that the natural frequency of the wind turbine obtained from the integrated model is closer to the actual monitoring values compared to a simplified model, and simplifying the upper wind turbine structure leads to an overestimation of the natural frequency. The monitoring results of the natural frequency of the structure are not significantly affected by the monitoring elevation and can be used to assess the wind turbine's operational status based on the consistency of natural frequencies at different elevations. As the foundation embedment depth, pile diameter, soil elastic modulus, and internal friction angle increase, the natural frequency of the structure also increases. With an increase in the tower height, the natural frequency of the structure linearly decreases, and an increase in the tower wall thickness leads to a parabolic increase in the natural frequency of the structure. Changes in the friction coefficient between piles and soil have minimal impact on the natural frequency of the structure. Wind turbine operation increases the low-order natural frequencies of the structure, with the most significant impact on the first two natural frequencies.

Key words

offshore wind turbines / pile foundation / natural frequencies / integrated model / influence factors analysis

Cite this article

Download Citations
Jiang Linfeng, Wu Teng, Wu Yong. NUMERICAL SIMULATION OF NATURAL FREQUENCY OF OFFSHORE WIND TURBINES AND ITS INFLUENCING FACTOR STUDY[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 596-604 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0961

References

[1] ARANY L, BHATTACHARYA S, MACDONALD J H G, et al. Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil dynamics and earthquake engineering, 2016, 83: 18-32.
[2] BYRNE B W, LEBLANC C, HOULSBY G T.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Geotechnique, 2010, 60(2): 79-90.
[3] 陈琛, 马宏旺, 李玉韬, 等. 冲刷对海上风电单桩基础自振频率影响的研究[J]. 振动与冲击, 2020, 39(22): 16-22.
CHEN C, MA H W, LI Y T, et al.Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of vibration and shock, 2020, 39(22): 16-22.
[4] 刘超, 杨树耕, 田男. 基于ANSYS的海上风机塔筒的自振特性分析[J]. 天津理工大学学报, 2014, 30(4): 24-27, 35.
LIU C, YANG S G, TIAN N.The vibration characteristics analysis of offshore wind turbine tower based on ANSYS[J]. Journal of Tianjin University of Technology, 2014, 30(4): 24-27, 35.
[5] 王丕光, 刘晶波, 赵密. 运行状态下海上单桩风机系统自振频率分析[J]. 地震工程学报, 2021, 43(3): 704-709.
WANG P G, LIU J B, ZHAO M.Effect of operating state on the natural frequency of an offshore wind turbine founded on monopiles[J]. China earthquake engineering journal, 2021, 43(3): 704-709.
[6] 杨春宝, 王睿, 张建民. 单桩基础型近海风机系统自振频率实用计算方法[J]. 工程力学, 2018, 35(4): 219-225.
YANG C B, WANG R, ZHANG J M.Numerical method for calculating system fundamental frequencies of offshore wind turbines with monopile foundations[J]. Engineering mechanics, 2018, 35(4): 219-225.
[7] 李益. 三桩基础海上风力发电结构的自振特性分析[D]. 大连: 大连理工大学, 2013.
LI Y.Natural vibration characteristic analysis of triple-piles based offshore wind power structure[D]. Dalian: Dalian University of Technology, 2013.
[8] ALKHOURY P, SOUBRA A H, REY V, et al.A full three-dimensional model for the estimation of the natural frequencies of an offshore wind turbine in sand[J]. Wind energy, 2021, 24(7): 699-719.
[9] PAGE A M, NÆSS V, DE VAAL J B, et al. Impact of foundation modelling in offshore wind turbines: comparison between simulations and field data[J]. Marine structures, 2019, 64: 379-400.
[10] 刘红军, 杨奇. 局部冲刷对风机支撑系统承载性能的影响[J]. 岩土力学, 2018, 39(2): 722-727.
LIU H J, YANG Q.Influence of local scour on bearing performance of wind turbine supporting system[J]. Rock and soil mechanics, 2018, 39(2): 722-727.
[11] 靳军伟, 杨敏, 王伟, 等. 海上风电机组单桩基础模态及参数敏感性分析[J]. 同济大学学报(自然科学版), 2014, 42(3): 386-392.
JIN J W, YANG M, WANG W, et al.Offshore wind turbine monopile foundation modal and parameter sensitivity analysis[J]. Journal of Tongji University (natural science), 2014, 42(3): 386-392.
[12] 王明超. 单桩式海上风力机耦合模型建模方法研究[D]. 上海: 上海交通大学, 2014.
WANG M C.Research of coupled model for offshore wind turbine with monopile support structure[D]. Shanghai: Shanghai Jiao Tong University, 2014.
[13] 柯世堂, 王同光, 曹九发, 等. 考虑叶片旋转和离心力效应风力机塔架风振分析[J]. 太阳能学报, 2015, 36(1): 33-40.
KE S T, WANG T G, CAO J F, et al.Wind-induced response analysis of wind turbine tower considering rotational and centrifugal force effect[J]. Acta energiae solaris sinica, 2015, 36(1): 33-40.
[14] 李万润, 丁明轩, 王雪平, 等. 考虑叶片旋转及土-结构相互作用对风电结构动力特性影响的研究[J]. 太阳能学报, 2021, 42(1): 248-255.
LI W R, DING M X, WANG X P, et al.Influence of blade rotation and soil-structure interaction on dynamic characteristics of wind power structure[J]. Acta energiae solaris sinica, 2021, 42(1): 248-255.
[15] 樊昂, 李录平, 欧阳敏南, 等. 考虑叶片旋转与土构耦合作用的海上风电机组塔筒动态特性研究[J]. 动力工程学报, 2022, 42(12): 1255-1264.
FAN A, LI L P, OUYANG M N, et al.Research on dynamic characteristics of offshore wind turbine tower considering the coupling of blade rotation and soil-structure interaction[J]. Journal of Chinese Society of Power Engineering, 2022, 42(12): 1255-1264.
[16] CLOUGH R W, PENZIEN J.Dynamics of structures[M]. New York: McGraw-Hill, 1975.
[17] 王鑫, 林鹏, 陈晓路, 等. 如东海上风力机组基础冲刷机理数值模拟研究[J]. 太阳能学报, 2021, 42(12): 239-244.
WANG X, LIN P, CHEN X L, et al.Numerical simulation on scour mechanism of Rudong offshore turbine foundation[J]. Acta energiae solaris sinica, 2021, 42(12): 239-244.
[18] 王鑫, 林鹏, 黄浩东, 等. 海上风电基础冲刷动力特性及在线监测[J]. 清华大学学报(自然科学版), 2023, 63(7): 1087-1094.
WANG X, LIN P, HUANG H D, et al.Scour dynamic properties and online monitoring of offshore wind power foundation[J]. Journal of Tsinghua University (science and technology), 2023, 63(7): 1087-1094.
[19] LOMBARDI D, BHATTACHARYA S, MUIR WOOD D.Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil dynamics and earthquake engineering, 2013, 49: 165-180.
[20] 娄培杰. 黏性土填料下考虑土拱效应的非极限主动土压力计算方法[J]. 岩土力学, 2015, 36(4): 988-994, 1014.
LOU P J.A method to calculate the active earth pressure with considering soil arching effect under the nonlimit state of clayey soil[J]. Rock and soil mechanics, 2015, 36(4): 988-994, 1014.
[21] MORATÓ A, SRIRAMULA S, KRISHNAN N, et al.Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation[J]. Renewable energy, 2017, 101: 126-143.
[22] 沈晓雷, 龚睿, 周茂强, 等. 海上风电变径桩基础模态分析[J]. 水力发电, 2022, 48(9): 114-118, 123.
SHEN X L, GONG R, ZHOU M Q, et al.Modal analysis on variable diameter monopile of offshore wind turbine[J]. Water power, 2022, 48(9): 114-118, 123.
[23] 许成顺, 孙毅龙, 翟恩地, 等. 海上风电单桩基础自振频率及参数影响分析[J]. 太阳能学报, 2020, 41(12): 297-304.
XU C S, SUN Y L, ZHAI E D, et al.Offshore turbine monopile foundation natural frequency and parameter impact analysis[J]. Acta energiae solaris sinica, 2020, 41(12): 297-304.
PDF(1494 KB)

Accesses

Citation

Detail

Sections
Recommended

/