PHOTOVOLTAIC ARRAY FAULT DIAGNOSIS METHOD BASED ON SV-CBDE MODEL

Li Yang, Guo Chunmei, Tang Junhao, You Yuwen, He Zhonglu, Wang Leilei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 227-236.

PDF(2191 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2191 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 227-236. DOI: 10.19912/j.0254-0096.tynxb.2024-0993

PHOTOVOLTAIC ARRAY FAULT DIAGNOSIS METHOD BASED ON SV-CBDE MODEL

  • Li Yang1, Guo Chunmei1, Tang Junhao1, You Yuwen1, He Zhonglu1, Wang Leilei2
Author information +
History +

Abstract

In order to achieve accurate fault diagnosis and improve the power generation efficiency of photovoltaic array systems, this paper proposes a SV-CBDE diagnosis model that integrates a hybrid model of convolutional neural network and bidirectional gated recurrent unit network, and a hybrid model of deep belief network and extreme learning machine with a soft voting method. Taking the P-V curve data of the photovoltaic array as input, the two models are used to diagnose the samples separately, and then the probabilities of the diagnostic results output from the two diagnosis models are weighted and averaged to derive the final diagnostic results and thus the type of faults are determined, so as to improve the accuracy of the photovoltaic array fault diagnosis. The proposed model is evaluated on the same dataset against four fault diagnosis models (CNN, CNN-LSTM, CNN-BiGRU, and DBN-ELM). The results indicate that the integrated model proposed in this paper exhibits higher accuracy, recall, precision, and F1-score compared to the other four models in diagnosing inter-string open circuits, locally generated shadows in components, inter-component short circuits, photovoltaic array aging, and three types of concurrent faults, demonstrating its superior fault identification capability.

Key words

photovoltaic array / fault diagnosis / integrate / diagnosis model / type of faults / accuracy

Cite this article

Download Citations
Li Yang, Guo Chunmei, Tang Junhao, You Yuwen, He Zhonglu, Wang Leilei. PHOTOVOLTAIC ARRAY FAULT DIAGNOSIS METHOD BASED ON SV-CBDE MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 227-236 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0993

References

[1] 陈诗一, 林伯强. 中国能源环境与气候变化经济学研究现状及展望: 首届中国能源环境与气候变化经济学者论坛综述[J]. 经济研究, 2019, 54(7): 203-208.
CHEN S Y, LIN B Q.The summary of the 1st forum for China’s energy, environemnt and climate change economics[J]. Economic research journal, 2019, 54(7): 203-208
[2] HONG Y Y, PULA R A.Methods of photovoltaic fault detection and classification: a review[J]. Energy reports, 2022, 8: 5898-5929.
[3] 任惠, 夏静, 卢锦玲, 等. 基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法[J]. 太阳能学报, 2023, 44(8): 238-245.
REN H, XIA J, LU J L, et al.Research on fault diagnosis of photovoltaic modules based on infrared images and improved MobileNet-V3[J]. Acta energiae solaris sinica, 2023, 44(8): 238-245.
[4] 张猛, 尹丽菊, 周辉, 等. 基于SimAM-Ada YOLOv5的太阳能电池表面缺陷检测[J]. 电子测量技术, 2023, 46(22): 17-25.
ZHANG M, YIN L J, ZHOU H, et al.Surface defect detection of solar cells based on SimAM-Ada YOLOv5[J]. Electronic measurement technology, 2023, 46(22): 17-25.
[5] KELLIL N, AISSAT A, MELLIT A.Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions[J]. Energy, 2023, 263: 125902.
[6] CHEN S Q, YANG G J, GAO W, et al.Photovoltaic fault diagnosis via semisupervised ladder network with string voltage and current measures[J]. IEEE journal of photovoltaics, 2020, 11(1): 219-231.
[7] 张晓娜, 高德东, 刘海雄, 等. 一种新型光伏阵列多传感器故障检测定位方法[J]. 可再生能源, 2016, 34(2): 166-172.
ZHANG X N, GAO D D, LIU H X, et al.A noval method for multi-sensor fault detection and positioning of photovoltaic array[J]. Renewable energy resources, 2016, 34(2): 166-172.
[8] ABD EL-GHANY H A, ELGEBALY A E, TAHA I B M. A new monitoring technique for fault detection and classification in PV systems based on rate of change of voltage-current trajectory[J]. International journal of electrical power & energy systems, 2021, 133: 107248.
[9] 程起泽, 陈泽华, 张雲钦, 等. 基于CNN-LSTM的太阳能光伏组件故障诊断研究[J]. 电子技术应用, 2020, 46(4): 66-70.
CHENG Q Z, CHEN Z H, ZHANG Y Q, et al.Research on fault diagnosis of solar photovoltaic module based on CNN-LSTM[J]. Application of electronic technique, 2020, 46(4): 66-70.
[10] 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470.
GAO W, HUANG J M.Intelligent fault diagnosis method of photovoltaic model via SSELM[J]. Acta energiae solaris sinica, 2021, 42(12): 465-470.
[11] 李斌, 郭自强, 高鹏. 改进北方苍鹰算法在光伏阵列中应用研究[J]. 电子测量与仪器学报, 2023, 37(7): 131-9.
LI B, GUO Z Q, GAO P.Application of improved northern goshawk optimization algorithm in photovoltaic array[J]. Journal of electronic measurement and instrumentation, 2023, 37(7): 131-139.
[12] BADR M M, ABDEL-KHALIK A S, HAMAD M S, et al. Intelligent fault identification strategy of photovoltaic array based on ensemble self-training learning[J]. Solar energy, 2023, 249: 122-138.
[13] ESKANDARI A, AGHAEI M, MILIMONFARED J, et al.A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm[J]. International journal of electrical power & energy systems, 2023, 144: 108591.
[14] 张希康, 李泽滔. 光伏阵列故障诊断算法研究综述[J]. 智能计算机与应用, 2022, 12(2): 143-147.
ZHANG X K, LI Z T.A survey on photovoltaic array fault diagnosis algorithms[J]. Intelligent computers and applications, 2022, 12(2):143-147.
[15] 林俊亭, 王帅, 刘恩东, 等. 基于模糊聚类和CNN-BIGRU的轨道电路故障预测[J]. 振动测试与诊断, 2023, 43(3): 500-507, 619-620.
LIN J T, WANG S, LIU E D, et al. Fault prediction method of track circuit based on fuzzy clustering and CNN-BIGRU [J]. Journal of vibration,measurement & diagnosis, 2023, 43(3): 500-507, 619-620.
[16] 司涌波, 张国瑞, 陈光武, 等. 基于深度置信网络的道岔故障智能诊断方法[J]. 重庆大学学报, 2023, 46(7): 75-85.
SI Y B, ZHANG G R, CHEN G W, et al.An intelligent diagnosis method of switch machine based on deep belief network[J]. Journal of Chongqing University, 2023, 46(7): 75-85.
[17] 王永平, 张蕾, 张晓琳, 等. 基于CNN-BiGRU的风机叶片故障诊断[J]. 内蒙古科技大学学报, 2022, 41(2): 173-179.
WANG Y P, ZHANG L, ZHANG X L, et al.Fault diagnosis of wind turbine blades based on CNN-BiGRU[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(2): 173-179.
[18] 武洋名, 宗学军, 何戡. 基于数据增强的DBN-ELM入侵检测方法[J]. 科学技术与工程, 2022, 22(34): 15195-15202.
WU Y M, ZONG X J, HE Z.DBN-ELM Intrusion detection method based on data augmentation[J]. Science technology and engineering, 2022, 22(34): 15195-15202.
[19] 黄富幸, 韩文花. 基于Voting机制的IMA-BP不平衡数据分类算法[J]. 科学技术与工程, 2023, 23(27): 11698-11705.
HUANG F X, HAN W H.Classification algorithm of IMA-BP for unbalanced data based on Voting mechanism[J]. Science technology and engineering, 2023, 23(27): 11698-11705.
PDF(2191 KB)

Accesses

Citation

Detail

Sections
Recommended

/