WIND TURBINE AIRFOIL DYNAMIC STALL OPTIMIZATION AND AERODYNAMIC CHARACTERIZATION ANALYSIS

Zhang Qiang, Chang Linsen, Miao Weipao, Li Chun, Yue Minnan, Kuang Liu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 680-688.

PDF(2342 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2342 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 680-688. DOI: 10.19912/j.0254-0096.tynxb.2024-1018

WIND TURBINE AIRFOIL DYNAMIC STALL OPTIMIZATION AND AERODYNAMIC CHARACTERIZATION ANALYSIS

  • Zhang Qiang1, Chang Linsen1, Miao Weipao1,2, Li Chun1,2, Yue Minnan1,2, Kuang Liu3
Author information +
History +

Abstract

Dynamic stall induced by flow separation during the rotation of wind turbine blades can make the aerodynamic forces deteriorate drastically. In order to improve the dynamic stall characteristics of the airfoil, an aerodynamic optimization framework of the airfoil based on a surrogate model is established. The S809 airfoil is taken as the research object. First, the airfoil is parametrically characterized, and the input vectors of the model training samples are obtained by Latin hypercube sampling, and the corresponding response values are solved by CFD method. Secondly, the surrogate model of aerodynamic shape and aerodynamic force of the airfoil is constructed by Gaussian process regression, and the model accuracy is improved by the infill point criterion. Finally, with the objective of reducing the aerodynamic fluctuations, the aerodynamic forces of one pitch cycle are optimized and designed by combining the global optimization algorithm. The results show that compared with the baseline airfoil, the change of aerodynamic shape of the optimized airfoil significantly reduces the drag and moment fluctuations, and effectively suppresses the dynamic stall in the airfoil leading edge during the pitch-down phase.

Key words

wind turbine / dynamic stall / surrogate model / airfoil optimization / aerodynamic analysis

Cite this article

Download Citations
Zhang Qiang, Chang Linsen, Miao Weipao, Li Chun, Yue Minnan, Kuang Liu. WIND TURBINE AIRFOIL DYNAMIC STALL OPTIMIZATION AND AERODYNAMIC CHARACTERIZATION ANALYSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 680-688 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1018

References

[1] 李春, 叶舟, 高伟, 等. 现代陆海风力机计算与仿真[M]. 上海: 上海科学技术出版社, 2012.
LI C, YE Z, GAO W, et al.Calculation and simulation of modern land-sea wind turbine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.
[2] 何闯, 曹人靖. 三维效应对大型风力机叶片气动-结构特性影响的数值研究[J]. 太阳能学报, 2023, 44(10): 291-295.
HE C, CAO R J.Numerical study on aerodynamic-structure characteristics of large wind turbine blades considering three-dimensional effects[J]. Acta energiae solaris sinica, 2023, 44(10): 291-295.
[3] 张荣聪. 风力机专用翼型的优化设计及气动性能数值分析[D]. 大连: 大连交通大学, 2014.
ZHANG R C.Optimization design and numerical analysis of aerodynamic performance on wind turbine airfoil[D]. Dalian: Dalian Jiaotong University, 2014.
[4] DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling[J]. Aerospace science and technology, 2021, 113: 106701.
[5] 张强, 缪维跑, 常林森, 等. 基于代理模型的风力机翼型动态失速优化设计[J]. 太阳能学报, 2023, 44(6): 343-350.
ZHANG Q, MIAO W P, CHANG L S, et al.Optimal design of dynamic stall of wind turbine airfoil based on surrogate model[J]. Acta energiae solaris sinica, 2023, 44(6): 343-350.
[6] 何磊, 钱炜祺, 刘滔, 等. 基于深度学习的翼型反设计方法[J]. 航空动力学报, 2020, 35(9): 1909-1917.
HE L, QIAN W Q, LIU T, et al.Inverse design method of airfoil based on deep learning[J]. Journal of aerospace power, 2020, 35(9): 1909-1917.
[7] ZHANG Y F, YAN C Y, CHEN H X.An inverse design method for airfoils based on pressure gradient distribution[J]. Energies, 2020, 13(13): 3400.
[8] SHARMA P, GUPTA B, PANDEY M, et al.Recent advancements in optimization methods for wind turbine airfoil design: a review[J]. Materials today: proceedings, 2021, 47: 6556-6563.
[9] 许瑞飞, 段卓毅, 钱瑞战. 基于Kriging代理模型的高升力构型优化设计[J]. 航空科学技术, 2023, 34(3): 58-63.
XU R F, DUAN Z Y, QIAN R Z.Optimization design of high-lift configuration using Kriging model[J]. Aeronautical science & technology, 2023, 34(3): 58-63.
[10] 唐新姿, 李鹏程, 彭锐涛, 等. 湍流工况小型风力机翼型气动特性及稳健优化[J]. 机械工程学报, 2020, 56(2): 192-200.
TANG X Z, LI P C, PENG R T, et al.Aerodynamic characteristics and robust optimization of small wind turbine airfoil under turbulence condition[J]. Journal of mechanical engineering, 2020, 56(2): 192-200.
[11] LI J Y, LI R, GAO Y, et al.Aerodynamic optimization of wind turbine airfoils using response surface techniques[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2010, 224(6): 827-838.
[12] WEN H, SANG S, QIU C H, et al.A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network[J]. Energy, 2019, 187: 116106.
[13] HAN Z H, ZHANG K S, SONG W P, et al.Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas, USA, 2013: 1108.
[14] 柳家齐, 陈荣钱, 楼锦华, 等. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024,45(9): 87-99.
LIU J Q, CHEN R Q, LOU J H, et al.Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning[J]. Acta aeronautica et astronautica sinica, 2024,45(9): 87-99.
[15] KULFAN B M.Universal parametric geometry representation method[J]. Journal of aircraft, 2008, 45(1): 142-158.
[16] KAROLCZUK A, KUREK M.Fatigue life uncertainty prediction using the Monte Carlo and Latin hypercube sampling techniques under uniaxial and multiaxial cyclic loading[J]. International journal of fatigue, 2022, 160: 106867.
[17] 常林森, 张倩莹, 郭雪岩. 基于高斯过程回归和遗传算法的翼型优化设计[J]. 航空动力学报, 2021, 36(11): 2306-2316.
CHANG L S, ZHANG Q Y, GUO X Y.Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of aerospace power, 2021, 36(11): 2306-2316.
[18] WANG P H, FENG Y K, CHEN Z G, et al.Study of a hull form optimization system based on a Gaussian process regression algorithm and an adaptive sampling strategy, Part I:single-objective optimization[J]. Ocean engineering, 2023, 279: 114502.
[19] JONES D R, SCHONLAU M, WELCH W J.Efficient global optimization of expensive black-box functions[J]. Journal of global optimization, 1998, 13(4): 455-492.
[20] FORRESTER D A I J, SÓBESTER D A, KEANE P A J. Engineering design via surrogate modelling: a practical guide[M]. New York: John Wiley & Sons, 2008.
[21] GHARALI K, JOHNSON D A.Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied energy, 2012, 93: 45-52.
[22] BUTTERFIELD C P, SIMMS D, HUYER S.Recent results from data analysis of dynamic stall on wind turbine blades[R]. National Renewable Energy Lab, Golden, CO(United States), 1992.
[23] RAMSAY R F, HOFFMAN M J, GREGOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Office of Scientific & Technical Information Technical Reports, 1995.
[24] COSTA ROCHA P A, BARBOSA ROCHA H H, MOURA CARNEIRO F O, et al. A case study on the calibration of the k-ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils[J]. Energy, 2016, 97: 144-150.
[25] CORKE T C, THOMAS F O.Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects[J]. Annual review of fluid mechanics, 2015, 47: 479-505.
[26] FRANCHINA N, PERSICO G, SAVINI M.2D-3D computations of a vertical axis wind turbine flow field: modeling issues and physical interpretations[J]. Renewable energy, 2019, 136: 1170-1189.
PDF(2342 KB)

Accesses

Citation

Detail

Sections
Recommended

/