DYNAMIC RELIABILITY PREDICTION OF OFFSHORE WIND TURBINE BASED ON BAYESIAN PARAMETER LEARNING OPTIMIZATION

Huang Lingling, Wang Quande, Ying Feixiang, Miao Yuzhi, Fu Yang, Liu Lujie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 703-713.

PDF(1132 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1132 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 703-713. DOI: 10.19912/j.0254-0096.tynxb.2024-1055

DYNAMIC RELIABILITY PREDICTION OF OFFSHORE WIND TURBINE BASED ON BAYESIAN PARAMETER LEARNING OPTIMIZATION

  • Huang Lingling1, Wang Quande2, Ying Feixiang2, Miao Yuzhi3, Fu Yang1, Liu Lujie1
Author information +
History +

Abstract

To improve the accuracy of reliability prediction for wind turbines, a dynamic reliability prediction model optimized through Bayesian parameter learning is developed. Firstly, a data processing method that integrates a pure reliability Bayesian network with a convolutional neural network was proposed to address the parameter uncertainty and feature extraction of "multivariate heterogeneous" state information. Secondly, a Bayesian improvement method based on parameter learning optimization was introduced to handle parameter uncertainty, enhancing the model’s accuracy in predicting future reliability levels. Finally, the constructed dynamic reliability prediction model, based on Bayesian parameter learning optimization, can precisely predict the reliability trend of wind turbine units over a certain time scale. Case study results show that, compared to other benchmark models, the proposed prediction model exhibits superior performance in predicting the reliability trend of wind turbine units, further validating its effectiveness.

Key words

offshore wind turbines / forecasting / deep learning / reliability / Bayesian networks

Cite this article

Download Citations
Huang Lingling, Wang Quande, Ying Feixiang, Miao Yuzhi, Fu Yang, Liu Lujie. DYNAMIC RELIABILITY PREDICTION OF OFFSHORE WIND TURBINE BASED ON BAYESIAN PARAMETER LEARNING OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 703-713 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1055

References

[1] 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42(12): 4278-4292.
GE C, YAN J, LIU Y Q, et al.Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42(12): 4278-4292.
[2] 赵琳, 魏澈, 王阳, 等. 海上风电场宏观选址与风能资源储量估算[J]. 太阳能学报, 2024, 45(5): 1-8.
ZHAO L, WEI C, WANG Y, et al.Macroscopical site selection and estimation of wind energy reserves for offshore wind farms[J]. Acta energiae solaris sinica, 2024, 45(5): 1-8.
[3] 符杨, 张耀楠, 刘璐洁, 等. 海上风电场维护任务动态调度策略[J]. 电力系统自动化, 2021, 45(21): 48-56.
FU Y, ZHANG Y N, LIU L J, et al.Dynamic dispatching strategy for maintenance tasks of offshore wind farm[J]. Automation of electric power systems, 2021, 45(21): 48-56.
[4] 黄玲玲, 符杨, 任浩瀚, 等. 基于状态信息的风电机组维护研究综述[J]. 中国电机工程学报, 2020, 40(21): 7065-7078.
HUANG L L, FU Y, REN H H, et al.Review of wind turbine maintenance based on condition monitoring systems[J]. Proceedings of the CESS, 2020, 40(21): 7065-7078.
[5] 张晓红, 张剑飞, 何于港, 等. 基于多状态空间划分的风电机组非完美维修决策[J]. 太阳能学报, 2022, 43(11): 203-214.
ZHANG X H, ZHANG J F, HE Y G, et al.Imperfect maintenance decision of wind turbine based on multi-state space partitioning[J]. Acta energiae solaris sinica, 2022, 43(11): 203-214.
[6] BHARDWAJ U, TEIXEIRA A P, SOARES C G.Reliability prediction of an offshore wind turbine gearbox[J]. Renewable energy, 2019, 141: 693-706.
[7] YAN Y Y.Load characteristic analysis and fatigue reliability prediction of wind turbine gear transmission system[J]. International journal of fatigue, 2020, 130: 105259.
[8] ZHU Y C, ZHU C C, SONG C S, et al.Improvement of reliability and wind power generation based on wind turbine real-time condition assessment[J]. International journal of electrical power & energy systems, 2019, 113: 344-354.
[9] ZHANG J X, SUN H X, SUN Z X, et al.Reliability assessment of wind power converter considering SCADA multistate parameters prediction using FP-growth, WPT, K-means and LSTM network[J]. IEEE access, 2020, 8: 84455-84466.
[10] ZHAO Y Y, LI D S, DONG A, et al.Fault prediction and diagnosis of wind turbine generators using SCADA data[J]. Energies, 2017, 10(8): 1210.
[11] HUANG L B, XIN H H, LI Z Y, et al.Identification of generalized short-circuit ratio for on-line stability monitoring of wind farms[J]. IEEE transactions on power systems, 2020, 35(4): 3282-3285.
[12] QIAN P, MA X D, ZHANG D H, et al.Data-driven condition monitoring approaches to improving power output of wind turbines[J]. IEEE transactions on industrial electronics, 2019, 66(8): 6012-6020.
[13] 符杨, 苗育植, 黄玲玲, 等. 基于改进贝叶斯网络的风电机组动态可靠性评估[J]. 电力自动化设备, 2022, 42(11): 32-39.
FU Y, MIAO Y Z, HUANG L L, et al.Dynamic reliability evaluation of wind turbine based on improved Bayesian network[J]. Electric power automation equipment, 2022, 42(11): 32-39.
[14] 董超跃. 基于动态贝叶斯网络的动车组牵引传动系统可靠性分析[D]. 北京: 北京交通大学, 2020.
DONG C Y.Reliability analysis of EMU traction drive system based on dynamic Bayesian network[D]. Beijing: Beijing Jiaotong University, 2020.
[15] 高立艾, 霍利民, 黄丽华, 等. 基于贝叶斯网络时序模拟的含微网配电系统可靠性评估[J]. 中国电机工程学报, 2019, 39(7): 2033-2041.
GAO L A, HUO L M, HUANG L H, et al.Reliability evaluation based on Bayesian networks time sequence simulation for distribution systems containing microgrid[J]. Proceedings of the CSEE, 2019, 39(7): 2033-2041.
[16] LIU Y, CHEN C J.Dynamic reliability assessment for nonrepairable multistate systems by aggregating multilevel imperfect inspection data[J]. IEEE transactions on reliability, 2017, 66(2): 281-297.
[17] 狄鹏, 倪子纯, 尹东亮. 基于云模型和证据理论的多属性决策优化算法[J]. 系统工程理论与实践, 2021, 41(4): 1061-1070.
DI P, NI Z C, YIN D L.A multi-attribute decision making optimization algorithm based on cloud model and evidence theory[J]. Systems engineering-theory & practice, 2021, 41(4): 1061-1070.
[18] 张哲, 秦博宇, 高鑫, 等. 基于CNN-LSTM网络的电网电压稳定紧急控制策略[J]. 电力系统自动化, 2023, 47(11): 60-68.
ZHANG Z, QIN B Y, GAO X, et al.Emergency control strategy of power grid voltage stability based on convolutional neural network and long short-term memory network[J]. Automation of electric power systems, 2023, 47(11): 60-68.
[19] ZHANG C, MA H X, HUA L, et al.An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction[J]. Energy, 2022, 254: 124250.
[20] 白旭, 汤荣铿, 罗小芳, 等. 基于故障树分析和贝叶斯网络方法的半潜式钻井平台系统多状态可靠性分析[J]. 中国造船, 2020, 61(2): 220-228.
BAI X, TANG R K, LUO X F, et al.Multi-state reliability analysis of semi-submersible drilling platform system based on FTA and BN[J]. Shipbuilding of China, 2020, 61(2): 220-228.
[21] 张军舰, 马岱君. 考试成绩的混合正态分布分析[J]. 数理统计与管理, 2021, 40(5): 815-821.
ZHANG J J, MA D J.Score analysis with mixed normal distribution[J]. Journal of applied statistics and management, 2021, 40(5): 815-821.
[22] MALAHINA E A U, IRIANE G R, BELUTOWE Y S, et al. A grid-search method approach for hyperparameter evaluation and optimization on teachable machine accuracy: a case study of sample size variation[J]. Journal of applied data sciences, 2024, 5(3): 1008-1025.
[23] BAI Y, YANG E, HAN B, et al.Understanding and improving early stopping for learning with noisy labels[J]. Advances in neural information processing systems, 2021, 34: 24392-24403.
[24] FU Y, YING F X, HUANG L L, et al.Multi-step-ahead significant wave height prediction using a hybrid model based on an innovative two-layer decomposition framework and LSTM[J]. Renewable energy, 2023, 203: 455-472.
[25] ZHOU F T, HUANG Z H, ZHANG C H.Carbon price forecasting based on CEEMDAN and LSTM[J]. Applied energy, 2022, 311: 118601.
[26] 黄玲玲, 李锁, 符杨, 等. 基于风电机组状态的超短期海上风电功率预测[J]. 太阳能学报, 2022, 43(8): 391-398.
HUANG L L, LI S, FU Y, et al.Ultra-short term offshore wind power prediction based on condition-assessment of wind turbines[J]. Acta energiae solaris sinica, 2022, 43(8): 391-398.
PDF(1132 KB)

Accesses

Citation

Detail

Sections
Recommended

/