REWIEW OF FAST FREQUENCY SUPPORT OF WTGS UNDER BACKGROUND OF HIGH PROPORTION WIND POWER GRID-CONNECTION

Qian Minhui, Zhang Jiansheng, Qin Wenping, Yang Dejian, Chen Ning, Peng Peipei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 714-726.

PDF(1135 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1135 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 714-726. DOI: 10.19912/j.0254-0096.tynxb.2024-1057

REWIEW OF FAST FREQUENCY SUPPORT OF WTGS UNDER BACKGROUND OF HIGH PROPORTION WIND POWER GRID-CONNECTION

  • Qian Minhui1,2, Zhang Jiansheng1, Qin Wenping1, Yang Dejian3, Chen Ning2, Peng Peipei2
Author information +
History +

Abstract

Subject to the unique networking operation mode, the contribution of wind turbines to the system inertia is almost zero. The high proportion of grid-connected wind power seriously threatens the system frequency stability, and the need for wind power to participate in system frequency regulation is increasingly urgent. Firstly, the influence of high wind power grid integration on frequency stability based on system inertia and frequency regulation coefficient is analyzed. Subsequently, the fast frequency support strategies of wind turbine generators are introduced in detail, including rotor kinetic energy control, de-load control, and the participating rapid frequence support of energy storage system, as well as the mechanism of action of the system of multiple control strategies. The advantages and disadvantages of various methods and the adaptation sceneries are compared. Finally, the future research prospects in this field are summarized in view of the power system and social levels.

Key words

high proportion of wind power grid connection / doubly-fed wind turbine / fast frequency support strategy / coordination control / virtual synchronous generator / droop control

Cite this article

Download Citations
Qian Minhui, Zhang Jiansheng, Qin Wenping, Yang Dejian, Chen Ning, Peng Peipei. REWIEW OF FAST FREQUENCY SUPPORT OF WTGS UNDER BACKGROUND OF HIGH PROPORTION WIND POWER GRID-CONNECTION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 714-726 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1057

References

[1] 王仲颖, 郑雅楠, 赵勇强, 等. 碳中和背景下可再生能源成为主导能源的发展路径及展望(上)[J]. 中国能源, 2021, 43(9): 7-13.
WANG Z Y, ZHENG Y N, ZHAO Y Q, et al.Development path and prospect of renewable energy as the dominant energy under the background of carbon neutralization (I)[J]. Energy of China, 2021, 43(9): 7-13.
[2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[3] 刘颖明, 王树旗, 王晓东. 基于广义预测控制的风电场调频控制策略研究[J]. 太阳能学报, 2022, 43(3): 405-410.
LIU Y M, WANG S Q, WANG X D.Secondary frequency regulation control of wind farm based on genrealized predictive control[J]. Acta energiae solaris sinica, 2022, 43(3): 405-410.
[4] 汪正军, 高静方, 赵冰, 等. 基于风速预测的风电场虚拟惯量协调控制技术[J]. 太阳能学报, 2022, 43(10): 138-143.
WANG Z J, GAO J F, ZHAO B, et al.Wind farm virtual inertia coordinated control technology based on wind speed prediction[J]. Acta energiae solaris sinica, 2022, 43(10): 138-143.
[5] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
WEN Y F, YANG W F, LIN X H.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric power automation equipment, 2020, 40(9): 211-222.
[6] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28” 大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6.
ZENG H, SUN F, LI T, et al.Analysis of“9·28” blackout in South Australia and its enlightenment to China[J]. Automation of electric power systems, 2017, 41(13): 1-6.
[7] 孙华东, 许涛, 郭强, 等. 英国“8·9” 大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6191.
SUN H D, XU T, GUO Q, et al.Analysis on blackout in great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6191.
[8] National Grid UK.Grid code review panel paper, future frequency response services[S]. Sept, 2010, 1-15.
[9] SINGARAO V Y, RAO V S.Frequency responsive services by wind generation resources in United States[J]. Renewable and sustainable energy reviews, 2016, 55: 1097-1108.
[10] GB/T 36994—2018, 风力发电机组电网适应性测试规程[S].
GB/T 36994—2018, Wind turbines-test procedure of grid adaptability[S].
[11] 曾繁宏, 张俊勃. 电力系统惯性的时空特性及分析方法[J]. 中国电机工程学报, 2020, 40(1): 50-58.
ZENG F H, ZHANG J B.Temporal and spatial characteristics of power system inertia and its analysis method[J]. Proceedings of the CSEE, 2020, 40(1): 50-58.
[12] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31-38.
HUANG L B, XIN H H, HUANG W, et al.Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of electric power systems, 2018, 42(8): 31-38.
[13] 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-25.
ZHANG Z Y, ZHANG N, DU E S, et al.Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-25.
[14] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5191.
SUN H D, WANG B C, LI W F, et al.Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5191.
[15] AKBARI M, MADANI S M.Analytical evaluation of control strategies for participation of doubly fed induction generator-based wind farms in power system short-term frequency regulation[J]. IET renewable power generation, 2014, 8(3): 324-333.
[16] 隗霖捷, 王德林, 李芸, 等. 基于可变系数的双馈风电机组与同步发电机协调调频策略[J]. 电力系统自动化, 2017, 41(2): 94-100.
WEI L J, WANG D L, LI Y, et al.Variable coefficient based coordinated frequency modulation strategy between DFIG-based wind turbine and synchronous generator[J]. Automation of electric power systems, 2017, 41(2): 94-100.
[17] SHI Q X, LI F X, CUI H T.Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies[J]. IEEE transactions on power systems, 2018, 33(6): 6355-6367.
[18] 国能发监管规[2021]61号《电力辅助服务管理办法》[Z]. http://zfxxgk.nea.gov.cn/2021-12/21/c_1310391161.htm
Measure for the Administration of Electricity Auxiliary services(Guo Neng Fa Jian Guan Gui[2021]No.61)[Z]. http://zfxxgk.nea.gov.cn/2021-12/21/c_1310391161.htm
[19] 鲁宗相, 李佳明, 乔颖, 等. 新能源场站快速频率支撑能力评估研究现状与技术展望[J]. 电力系统自动化, 2024, 48(10): 1-19.
LU Z X, LI J M, QIAO Y, et al.Research status and technology prospects of fast frequency support capability assessment for renewable energy stations[J]. Automation of electric power systems, 2024, 48(10): 1-19.
[20] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE transactions on power systems, 2006, 21(1): 433-434.
[21] ZENI L, RUDOLPH A J, MÜNSTER-SWENDSEN J, et al. Virtual inertia for variable speed wind turbines[J]. Wind energy, 2013, 16(8): 1225-1239.
[22] 高蒙楠, 秦文萍, 王丽彬, 等. 基于可释放动能的双馈风机虚拟惯性控制策略影响分析[J]. 现代电力, 2021, 38(5): 583-591.
GAO M N,QIN W P,WANG L B, et al.Influence analysis of DFIG virtual inertial control strategy based on releasable kinetic energy[J]. Modern electric power, 2021, 38(5): 583-591.
[23] VIDYANANDAN K V, SENROY N.Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE transactions on power systems, 2013, 28(2): 837-846.
[24] LEE J, MULJADI E, SORENSEN P, et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE transactions on sustainable energy, 2016, 7(1): 279-288.
[25] HU Y L, WU Y K.Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control[J]. IEEE transactions on industry applications, 2019, 55(3): 2300-2309.
[26] 李颖颖, 王德林, 范林源, 等. 双馈风电机组限功率运行下频率稳定的变系数控制策略[J]. 电网技术, 2019, 43(8): 2910-2917.
LI Y Y, WANG D L, FAN L Y, et al.Variable coefficient control strategy for frequency stability of DFIG under power-limited operation[J]. Power system technology, 2019, 43(8): 2910-2917.
[27] 杨德健, 许益恩, 高洪超, 等. 计及转速平滑恢复的双馈风电机组自适应频率控制策略[J]. 电力系统保护与控制, 2022, 50(6): 172-179.
YANG D J, XU Y E, GAO H C, et al.Self-adaptive frequency control scheme of a doubly-fed induction generator with smooth rotor speed recovery[J]. Power system protection and control, 2022, 50(6): 172-179.
[28] 张旭, 陈云龙, 岳帅, 等. 风电参与电力系统调频技术研究的回顾与展望[J]. 电网技术, 2018, 42(6): 1793-1803.
ZHANG X, CHEN Y L, YUE S, et al.Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power system technology, 2018, 42(6): 1793-1803.
[29] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
ZHANG G F, YANG J Y, SUN F, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[30] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68.
ZHAO J J, LYU X, FU Y, et al.Frequency regulation of the wind/photovoltaic/diesel microgrid based on DFIG cooperative strategy with variable coefficients between virtual inertia and over-speed control[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68.
[31] 王晓东, 曹国胜, 刘颖明, 等. 双馈风电机组动态虚拟惯量和阻尼模糊自适应控制策略研究[J]. 太阳能学报, 2023, 44(9): 356-365.
WANG X D, CAO G S, LIU Y M, et al.Research on fuzzyadaptive control strategy of dynamic virtual inertiaand damping of doublyfed wind turbine[J]. Acta energiae solaris sinica, 2023, 44(9): 356-365.
[32] ULLAH N R, THIRINGER T, KARLSSON D.Temporary primary frequency control support by variable speed wind turbines-potential and applications[J]. IEEE transactions on power systems, 2008, 23(2): 601-612.
[33] EL ITANI S, ANNAKKAGE U D, JOOS G.Short-term frequency support utilizing inertial response of DFIG wind turbines[C]//2011 IEEE Power and Energy Society General Meeting. San Diego, CA, 2011:1-8.
[34] KANG M, MULJADI E, HUR K, et al.Stable adaptive inertial control of a doubly-fed induction generator[J]. IEEE transactions on smart grid, 2016, 7(6): 2971-2979.
[35] KANG M, KIM K, MULJADI E, et al.Frequency control support of a doubly-fed induction generator based on the torque limit[J]. IEEE transactions on power systems, 2016, 31(6): 4575-4583.
[36] YANG D J, KIM J, KANG Y C, et al.Temporary frequency support of a DFIG for high wind power penetration[J]. IEEE transactions on power systems, 2018, 33(3): 3428-3437.
[37] YANG D J, GAO H C, ZHANG L, et al.Short-term frequency support of a doubly-fed induction generator based on an adaptive power reference function[J]. International journal of electrical power & energy systems, 2020, 119: 105955.
[38] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
QIAO Y, GUO X Q, LU Z X, et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power system technology, 2020, 44(3): 807-815.
[39] 张雯欣, 吴琛, 黄伟, 等. 考虑频率二次跌落的系统频率特征评估及风电调频参数整定[J]. 电力系统自动化, 2022, 46(8): 11-19.
ZHANG W X, WU C, HUANG W, et al.Evaluation of system frequency characteristic and parameter setting of frequency regulation for wind power considering secondary frequency drop[J]. Automation of electric power systems, 2022, 46(8): 11-19.
[40] 张鹏, 杨苹, 唐玉烽, 等. 风电机组自适应步进惯量控制策略[J]. 电网技术, 2024, 48(8): 3401-3408.
ZHANG P, YANG P, TANG Y F, et al.Adaptive stepped inertia control strategy for wind turbines[J]. Power system technology, 2024, 48(8): 3401-3408.
[41] LIU K C, QU Y B, KIM H M, et al.Avoiding frequency second dip in power unreserved control during wind power rotational speed recovery[J]. IEEE transactions on power systems, 2018, 33(3): 3097-3106.
[42] 付媛, 万怿, 张祥宇, 等. 储能虚拟惯量主动支撑与调频状态转移控制[J]. 中国电机工程学报, 2024, 44(7): 2628-2640, 10.
FU Y, WAN Y, ZHANG X Y, et al.Active support of energy storage virtual inertia and frequency modulation state transfer control[J]. Proceedings of the CSEE, 2024, 44(7): 2628-2640, 10.
[43] 李世春, 申骜, 程绪长, 等. 提升惯量响应与转速恢复的风储协调惯量控制方法[J]. 电网技术, 2023, 47(4): 1570-1578.
LI S C, SHEN A, CHENG X C, et al.Wind-storage coordinated inertia control for improving inertia response and rotor speed recovery[J]. Power system technology, 2023, 47(4): 1570-1578.
[44] FANG Q, CHEN Z Y, ZOU Y, et al.Improved stepwise inertial control for wind turbines considering frequency response of synchronous generators[C]//2021 China Automation Congress (CAC). Beijing, China, 2021: 2587-2593.
[45] MULJADI E, GEVORGIAN V, SINGH M, et al.Understanding inertial and frequency response of wind power plants[C]//2012 IEEE Power Electronics and Machines in Wind Applications. Denver, CO, USA, 2012:1-8.
[46] 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391.
DING L, YIN S Y, WANG T X, et al.Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power system technology, 2015, 39(9): 2385-2391.
[47] 胥国毅, 胡家欣, 郭树锋, 等. 超速风电机组的改进频率控制方法[J]. 电力系统自动化, 2018, 42(8): 39-44.
XU G Y, HU J X, GUO S F, et al.Improved frequency control strategy for over-speed wind turbines[J]. Automation of electric power systems, 2018, 42(8): 39-44.
[48] 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-26.
ZHANG Z S, SUN Y Z, LI G J, et al.Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of electric power systems, 2011, 35(17): 20-26.
[49] 严干贵, 赵伟哲, 张礼珏. 变速变桨距风电机组减载调频综合控制策略研究[J]. 东北电力大学学报, 2018, 38(5): 1-8.
YAN G G, ZHAO W Z, ZHANG L J.Research on integrated control of deloading frequency regulation for variable speed and variable pitch angle wind turbines[J]. Journal of Northeast Electric Power University, 2018, 38(5): 1-8.
[50] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3662.
HU J X, XU G Y, BI T S, et al.A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power system technology, 2019, 43(10): 3656-3662.
[51] 潘文霞. 风力发电与并网技术[M]. 北京: 中国水利水电出版社, 2017.
PAN W X.Wind power generation and grid-connected technology[M]. Beijing: China Water & Power Press, 2017.
[52] 汤雪松, 殷明慧, 李冬运, 等. 变速与变桨协调的风电机组平滑功率控制[J]. 电力系统自动化, 2019, 43(2): 112-120.
TANG X S, YIN M H, LI D Y, et al.Power smoothing control of wind turbine generator via coordinated rotor speed and pitch angle regulation[J]. Automation of electric power systems, 2019, 43(2): 112-120.
[53] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-359.
LYU Z P, SHENG W X, LIU H T, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-359.
[54] 程冲, 杨欢, 曾正, 等. 虚拟同步发电机的转子惯量自适应控制方法[J]. 电力系统自动化, 2015, 39(19): 82-89.
CHENG C, YANG H, ZENG Z, et al.Rotor inertia adaptive control method of VSG[J]. Automation of electric power systems, 2015, 39(19): 82-89.
[55] 杨效, 曾成碧, 苗虹, 等. 优化虚拟同步发电机惯量和阻尼的自适应控制策略[J]. 太阳能学报, 2023, 44(11): 495-504.
YANG X, ZENG C B, MIAO H, et al.Optimizing adaptive inertia and damping control strategy of virtual synchronous generator[J]. Acta energiae solaris sinica, 2023, 44(11): 495-504.
[56] 谢震, 孟浩, 张兴, 等. 基于定子虚拟阻抗的双馈风电机组虚拟同步控制策略[J]. 电力系统自动化, 2018, 42(9): 157-163, 187.
XIE Z, MENG H, ZHANG X, et al.Virtual synchronous control strategy of DFIG-based wind turbines based on stator virtual impedance[J]. Automation of electric power systems, 2018, 42(9): 157-163, 187.
[57] 秦世耀, 代林旺, 王瑞明, 等. 考虑风电机组功率跌落和机械载荷优化的虚拟惯量控制方法[J]. 电网技术, 2021, 45(5): 1665-1672.
QIN S Y, DAI L W, WANG R M, et al.Virtual inertia control method considering wind turbine power drop and mechanical load optimization[J]. Power system technology, 2021, 45(5): 1665-1672.
[58] 王瑛玮. 考虑疲劳载荷的风电场集群调频控制策略研究[D]. 沈阳: 沈阳工业大学, 2020.
WANG Y W.Research on frequency regulation control strategy of wind farm cluster considering fatigue load[D]. Shenyang: Shenyang University of Technology, 2020.
[59] 潘沈恺, 高丙团, 毛永恒, 等. 考虑机组疲劳载荷的风电场快速有功功率分配方法[J]. 电力系统自动化, 2024, 48(15): 112-121.
PAN S K, GAO B T, MAO Y H, et al.Fast active power distribution method for wind farms considering fatigue loads of wind turbines[J]. Automation of electric power systems, 2024, 48(15): 112-121.
[60] YANG D Y, WEN J X, CHAN K W, et al.Dispatching of wind/battery energy storage hybrid systems using inner point method-based model predictive control[J]. Energies, 2016, 9(8): 629.
[61] KHALID M, AGUILERA R P, SAVKIN A V, et al.A market-oriented wind power dispatch strategy using adaptive price thresholds and battery energy storage[J]. Wind energy, 2018, 21(4): 242-254.
[62] GIONFRA N, SANDOU G, SIGUERDIDJANE H, et al.Wind farm distributed PSO-based control for constrained power generation maximization[J]. Renewable energy, 2019, 133: 103-117.
[63] GAO X D, MENG K, DONG Z Y, et al.Cooperation-driven distributed control scheme for large-scale wind farm active power regulation[J]. IEEE transactions on energy conversion, 2017, 32(3): 1240-1250.
[64] KNUDSEN T, BAK T, SVENSTRUP M.Survey of wind farm control-power and fatigue optimization[J]. Wind energy, 2015, 18(8): 1333-1351.
[65] WANG X D, WANG Y W, LIU Y M.Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load[J]. International journal of electrical power & energy systems, 2020, 117: 105696.
[66] YAO Q, LI S L, HE J, et al.New design of a wind farm frequency control considering output uncertainty and fatigue suppression[J]. Energy reports, 2023, 9: 1436-1446.
[67] 杨伟峰, 文云峰, 李立, 等. 考虑疲劳载荷的风电场分散式频率响应策略[J]. 电力自动化设备, 2022, 42(4): 55-62.
YANG W F, WEN Y F, LI L, et al.Decentralized frequency response strategy for wind farm considering fatigue load[J]. Electric power automation equipment, 2022, 42(4): 55-62.
[68] 刘军, 张彬彬, 赵晨聪. 基于数据驱动的风电场有功功率分配算法[J]. 电力系统自动化, 2019, 43(17): 125-136.
LIU J, ZHANG B B, ZHAO C C.Data-driven based active power distribution algorithm in wind farm[J]. Automation of electric power systems, 2019, 43(17): 125-136.
[69] 路朋, 叶林, 汤涌, 等. 基于模型预测控制的风电集群多时间尺度有功功率优化调度策略研究[J]. 中国电机工程学报, 2019, 39(22): 6572-6582.
LU P, YE L, TANG Y, et al.Multi-time scale active power optimal dispatch in wind power cluster based on model predictive control[J]. Proceedings of the CSEE, 2019, 39(22): 6572-6582.
[70] 肖运启, 张晓航, 苗田银, 等. 基于多Agent协作控制的风电场功率调度策略[J]. 太阳能学报, 2018, 39(7): 2003-2011.
XIAO Y Q, ZHANG X H, MIAO T Y, et al.Wind farm power dispatching control strategy based on multi-agent system[J]. Acta energiae solaris sinica, 2018, 39(7): 2003-2011.
[71] 李仕杰, 王铁强, 刘兴杰. 基于机组分类的风电场有功功率控制策略研究[J]. 太阳能学报, 2014, 35(9): 1778-1783.
LI S J, WANG T Q, LIU X J.Active power control strategy of wind farms based on state classification algorithm[J]. Acta energiae solaris sinica, 2014, 35(9): 1778-1783.
[72] 叶林, 任成, 李智, 等. 风电场有功功率多目标分层递阶预测控制策略[J]. 中国电机工程学报, 2016, 36(23): 6327-6336.
YE L, REN C, LI Z, et al.Stratified progressive predictive control strategy for multi-objective dispatching active power in wind farm[J]. Proceedings of the CSEE, 2016, 36(23): 6327-6336.
[73] 侍乔明, 王刚, 李海英, 等. 考虑调频能力的风电场虚拟惯量多机协同控制策略[J]. 电网技术, 2019, 43(11): 4005-4015.
SHI Q M, WANG G, LI H Y, et al.Coordinated virtual inertia control strategy of multiple wind turbines in wind farms considering frequency regulation capability[J]. Power system technology, 2019, 43(11): 4005-4015.
[74] 何廷一, 孙领, 李胜男, 等. 考虑风速差异的风电场减载方案与一次调频策略[J]. 电力建设, 2022, 43(7): 139-148.
HE T Y, SUN L, LI S N, et al.Research on deloading scheme and primary frequency regulation strategy of wind farm considering wind speed difference[J]. Electric power construction, 2022, 43(7): 139-148.
[75] LI W X, ZHU M, CHAO P P, et al.Enhanced FRT and postfault recovery control for MMC-HVDC connected offshore wind farms[J]. IEEE transactions on power systems, 2020, 35(2): 1606-1617.
[76] MAHISH P, PRADHAN A K.Distributed synchronized control in grid integrated wind farms to improve primary frequency regulation[J]. IEEE transactions on power systems, 2020, 35(1): 362-373.
[77] 孙舶皓, 汤涌, 叶林, 等. 基于随机分层分布式模型预测控制的风电集群频率控制规划方法[J]. 中国电机工程学报, 2019, 39(20): 5903-5914.
SUN B H, TANG Y, YE L, et al.A programming method for wind power cluster frequency control based on S-H-DMPC[J]. Proceedings of the CSEE, 2019, 39(20): 5903-5914.
[78] 马婧涵, 文传博. 考虑通信延迟的微电网分布式二次协调控制[J]. 可再生能源, 2021, 39(7): 969-975.
MA J H, WEN C B.Distributed secondary coordinated control of microgrid considering communication delay[J]. Renewable energy resources, 2021, 39(7): 969-975.
[79] 邵鹏程, 姜智锐, 杜国斌, 等. 风机控制器串口通信问题分析定位的流程及方法[J]. 电子制作, 2022, 30(3): 11-15.
SHAO P C, JIANG Z R, DU G B, et al.The process and method of analyzing and locating the serial communication problem of the wind turbine controller[J]. Electronic production, 2022, 30(3): 11-15.
[80] 郭春岭, 蔡国洋, 单馨, 等. 基于GOOSE通信的风电场快速调压控制策略研究[J]. 湖南电力, 2022, 42(5): 29-35.
GUO C L, CAI G Y, SHAN X, et al.Research on fast voltage regulation control strategy for wind farm based on GOOSE communication[J]. Hunan electric power, 2022, 42(5): 29-35.
[81] 牛超, 单馨, 蔡国洋, 等. 基于GOOSE的新能源场站多级控制技术研究[J]. 宁夏电力, 2024(1): 18-23.
NIU C, SHAN X, CAI G Y, et al.Research on multilevel control technology for new energy stations based on GOOSE[J]. Ningxia electric power, 2024(1): 18-23.
[82] 李伟强, 翟新军, 胥勇. 新能源场站无线通信技术研究应用[J]. 能源与节能, 2024(3): 51-54.
LI W Q, ZHAI X J, XU Y.Research and application of wireless communication technology for new energy station[J]. Energy and energy conservation, 2024(3): 51-54.
[83] 庞伟. 兆瓦级风电机组通信系统研究[D]. 湘潭: 湘潭大学, 2013.
PANG W.Research on communication system for MW-class wind power generator[D]. Xiangtan: Xiangtan University, 2013.
[84] 徐哲. 进口风电机组运行数据采集转发系统开发实践[J]. 风能, 2024(4): 86-94.
XU Z.Development practice of data acquisition and forwarding system for the operation of imported wind turbines[J]. Wind energy, 2024(4): 86-94.
[85] 盛四清, 占志刚, 吴林林, 等. 考虑频率二次跌落的风电机组调频控制研究[J]. 太阳能学报, 2023, 44(8): 485-491.
SHENG S Q, ZHAN Z G, WU L L, et al.Research on frequency regulation control of wind turbines considering secondary frequency drop[J]. Acta energiae solaris sinica, 2023, 44(8): 485-491.
[86] 蒋平, 熊华川. 混合储能系统平抑风力发电输出功率波动控制方法设计[J]. 电力系统自动化, 2013, 37(1): 122-127.
JIANG P, XIONG H C.A control scheme design for smoothing wind power fluctuation with hybrid energy storage system[J]. Automation of electric power systems, 2013, 37(1): 122-127.
[87] 杨德健, 许益恩, 金朝阳, 等. 基于转矩极限的改进风电机组虚拟惯量控制策略[J]. 太阳能学报, 2023, 44(2): 80-86.
YANG D J, XU Y E, JIN Z Y, et al.Improved virtual inertia control strategy of wind turbine generators based on torque limit[J]. Acta energiae solaris sinica, 2023, 44(2): 80-86.
[88] 颜湘武, 崔森, 宋子君, 等. 基于超级电容储能控制的双馈风电机组惯量与一次调频策略[J]. 电力系统自动化, 2020, 44(14): 111-120.
YAN X W, CUI S, SONG Z J, et al.Inertia and primary frequency regulation strategy of doubly-fed wind turbine based on super-rcapacitor energy storage control[J]. Automation of electric power systems, 2020, 44(14): 111-120.
[89] TAN J, ZHANG Y C.Coordinated control strategy of a battery energy storage system to support a wind power plant providing multi-timescale frequency ancillary services[J]. IEEE transactions on sustainable energy, 2017, 8(3): 1140-1153.
[90] MIAO L, WEN J Y, XIE H L, et al.Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[C]//2014 IEEE Industry Application Society Annual Meeting. Vancouver, BC, Canada, 2014:1-7.
[91] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
YAN X W, CUI S, CHANG W F.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
PDF(1135 KB)

Accesses

Citation

Detail

Sections
Recommended

/