DATA-DRIVEN WIND POWER SYSTEM PERFORMANCE IMPROVEMENT AND PRACTICE

Zhu Youjun, Yan Lipeng, Zhang Chengyi, Liu Chuanliang, Wang Xiaodong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 774-780.

PDF(1884 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1884 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 774-780. DOI: 10.19912/j.0254-0096.tynxb.2024-1060

DATA-DRIVEN WIND POWER SYSTEM PERFORMANCE IMPROVEMENT AND PRACTICE

  • Zhu Youjun1, Yan Lipeng1, Zhang Chengyi1, Liu Chuanliang1, Wang Xiaodong2
Author information +
History +

Abstract

This article proposes the analysis and mining of SCADA operation data to improve the output performance of wind turbines. By analyzing the operating status and abnormal data types of wind turbines, an improved DBSCAN clustering method is adopted to clean and detect abnormal data caused by environmental changes. By using an improved moving least squares B-spline regression model, the control characteristic parameters corresponding to the maximum unit output at different wind speeds are identified and fed back to the unit control system. On the basis of unit simulation verification, validation and analysis were carried out under actual operating conditions of real units. Actual tests show that this method significantly improved system efficiency at rated wind speed.

Key words

wind turbines / operation data / data mining / DBSCAN algorithm / moving least square method / control characteristic parameters

Cite this article

Download Citations
Zhu Youjun, Yan Lipeng, Zhang Chengyi, Liu Chuanliang, Wang Xiaodong. DATA-DRIVEN WIND POWER SYSTEM PERFORMANCE IMPROVEMENT AND PRACTICE[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 774-780 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1060

References

[1] 金晓航, 泮恒拓, 徐正国. 数据驱动的风电机组变桨系统状态监测[J]. 太阳能学报, 2022, 43(4): 409-417.
JIN X H, PAN H T, XU Z G.Condition monitoring of wind turbine pitch system using data-driven approach[J]. Acta energiae solaris sinica, 2022, 43(4): 409-417.
[2] 韩万里, 茅大钧, 蔡晔, 等. 基于数据融合的风电变桨系统故障预警研究[J]. 太阳能学报, 2022, 43(12): 236-241.
HAN W L, MAO D J, CAI Y, et al.Research on fault warning of wind power pitch system based on data fusion[J]. Acta energiae solaris sinica, 2022, 43(12): 236-241.
[3] KUSIAK A, ZHENG H Y, SONG Z.Models for monitoring wind farm power[J]. Renewable energy, 2009, 34(3): 583-590.
[4] WANG Y, INFIELD D G, STEPHEN B, et al.Copula-based model for wind turbine power curve outlier rejection[J]. Wind energy, 2014, 17(11): 1677-1688.
[5] 赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化, 2014, 38(21): 39-46.
ZHAO Y N, YE L, ZHU Q W.Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms[J]. Automation of electric power systems, 2014, 38(21): 39-46.
[6] 马良玉, 孙佳明, 於世磊, 等. 基于DBSCAN和SDAE的风电机组异常工况预警研究[J]. 动力工程学报, 2021, 41(9): 786-793, 808.
MA L Y, SUN J M, YU S L, et al.DBSCAN and SDAE-based abnormal condition early warning for a wind turbine unit[J]. Journal of Chinese Society of Power Engineering, 2021, 41(9): 786-793, 808.
[7] KHALFALLAH M G, KOLIUB A M.Suggestions for improving wind turbines power curves[J]. Desalination, 2007, 209(1-3): 221-229.
[8] PELLETIER F, MASSON C, TAHAN A.Wind turbine power curve modelling using artificial neural network[J]. Renewable energy, 2016, 89: 207-214.
[9] 饶日晟, 叶林, 任成, 等. 基于实际运行数据的风电场功率曲线优化方法[J]. 中国电力, 2016, 49(3): 148-153.
RAO R S, YE L, REN C, et al.Wind farm power curve optimization based on actual operating data[J]. Electric power, 2016, 49(3): 148-153.
[10] WAN S T, CHENG L F, SHENG X L.Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model[J]. Energies, 2015, 8(7): 6286-6301.
PDF(1884 KB)

Accesses

Citation

Detail

Sections
Recommended

/