STUDY ON INFLUENCE MECHANISMS OF OFFSHORE PHOTOVOLTAIC POWER SYSTEM BASED ON MULTI-SOURCE SIMULATION

Wang Rui, Zhang Yi, Shu Jiaqing, Guo Su, Shen Tao, Bai Jianbo

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 259-266.

PDF(1276 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1276 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 259-266. DOI: 10.19912/j.0254-0096.tynxb.2024-1064

STUDY ON INFLUENCE MECHANISMS OF OFFSHORE PHOTOVOLTAIC POWER SYSTEM BASED ON MULTI-SOURCE SIMULATION

  • Wang Rui1, Zhang Yi1,2, Shu Jiaqing3, Guo Su1, Shen Tao3, Bai Jianbo1
Author information +
History +

Abstract

The nearshore floating photovoltaic (PV) power systems effectively address the contradiction between the need of PV power development and limited land resources, offering significant economic and social benefits. However, such systems are still in the early exploration stage and lack systematic research. This study utilizes PVsyst and SolarPV simulation software along with AQWA hydrodynamic simulation results to establish models of floating PV systems under various typical daily time scales in complicated nearshore environments. It comprehensively explored various key factors influencing system performance. A linear regression numerical model was developed based on simulation results, and path analysis was used to compare their impact on system performance gains. The results indicate that sea surface reflectance (37.9%) has the most significant impact on system performance, followed by average tilt angle during floating (30.6%), installation tilt angle or front-to-rear spacing (17.5%), and height above sea level (14%).

Key words

solar radiation / wave action / floating power plants / regression analysis / annual electricity generation / bifacial PV modules

Cite this article

Download Citations
Wang Rui, Zhang Yi, Shu Jiaqing, Guo Su, Shen Tao, Bai Jianbo. STUDY ON INFLUENCE MECHANISMS OF OFFSHORE PHOTOVOLTAIC POWER SYSTEM BASED ON MULTI-SOURCE SIMULATION[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 259-266 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1064

References

[1] 国家能源局. 国家能源局发布1—5月份全国电力工业统计数据[Z]. 2024.
National energy administration. The national energy administration released the national electricity industry statistics for January to May[Z]. 2024
[2] 鲁文鹤, 练继建, 董霄峰, 等. 波浪作用对海上漂浮式光伏光照辐射能的影响[J]. 水力发电学报, 2023, 42(5): 35-42.
LU W H, LIAN J J, DONG X F, et al.Effect of sea waves on radiant energy of floating photovoltaic[J]. Journal of hydroelectric engineering, 2023, 42(5): 35-42.
[3] 邵玺, 张臻, 张起源, 等. 基于PVsyst回归分析的双面光伏组件年发电增益模型[J]. 太阳能学报, 2021, 42(5): 209-213.
SHAO X, ZHANG Z, ZHANG Q Y, et al.In PVsyst: a model of annual power generation gain in bifacial photovoltaic module based on regression analysis[J]. Acta energiae solaris sinica, 2021, 42(5): 209-213.
[4] 何啸, 李国富, 葛霞, 等. 漂浮式光伏发电装置在海浪影响下的光照性能研究[J]. 工程设计学报, 2014, 21(6): 545-549.
HE X, LI G F, GE X, et al.Analysis of irradiation on floating solar panels affected by ocean waves[J]. Chinese journal of engineering design, 2014, 21(6): 545-549.
[5] 张继平, 郝国强, 李红波, 等. 不同地面背景对双面光伏组件发电性能的影响[J]. 太阳能学报, 2020, 41(3): 298-304.
ZHANG J P, HAO G Q, LI H B, et al.Influence of different backgrounds on power generation performance of bifacial PV modules[J]. Acta energiae solaris sinica, 2020, 41(3): 298-304.
[6] 陶云坤, 白建波, 邓士峰, 等. 基于蒙特卡罗方法的双面光伏组件年发电性能研究[J]. 太阳能学报, 2021, 42(11): 51-58.
TAO Y K, BAI J B, DENG S F, et al.Research on annual power generation performance of bifacial photovoltaic modules based on Monte Carlo method[J]. Acta energiae solaris sinica, 2021, 42(11): 51-58.
[7] 滕晓峰. 光伏电站双面组件发电量影响因素分析[J]. 上海电气技术, 2021, 14(2): 13-16.
TENG X F.Analysis of factors affecting power generation of bifacial solar PV arrays[J]. Journal of Shanghai electric technology, 2021, 14(2): 13-16.
[8] 王小宇, 刘波, 孙凯, 等. 光伏阵列故障诊断技术综述[J]. 电工技术学报, 2024, 39(20): 6526-6543.
WANG X Y, LIU B, SUN K, et al.A review of photovoltaic array fault diagnosis technology[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6526-6543.
[9] 陈琦, 王海华. 基于LCOE的单面与双面双玻光伏组件经济性分析[J]. 太阳能, 2022(4): 36-41.
CHEN Q, WANG H H.Economic analysis of monofacial and bifacial glass PV modules based on LCOE[J]. Solar energy, 2022(4): 36-41.
[10] 蒋鸿飞. 不同应用场景下n型双面双玻光伏组件发电能力比对[J]. 科技创新与应用, 2019, 9(22): 77-78, 82.
JIANG H F.Comparison of power generation capacity of n-type double-sided double-glass photovoltaic modules in different application scenarios[J]. Technology innovation and application, 2019, 9(22): 77-78, 82.
[11] LIU H H, KRISHNA V, LUN LEUNG J, et al.Field experience and performance analysis of floating PV technologies in the tropics[J]. Progress in photovoltaics: research and applications, 2018, 26(12): 957-967.
[12] 田介花, 陆炜. 双面光伏组件于水面应用时的发电特性研究[J]. 太阳能, 2019(7): 24-29.
TIAN J H, LU W.Study on power generation characteristics of double-sided PV modules in water surface application[J]. Solar energy, 2019(7): 24-29.
[13] 王方毓. 水上太阳能光伏电站的技术特点及应用[J]. 工程技术研究, 2017, 2(10): 76-77.
WANG F Y.Technical characteristics and application of water solar photovoltaic power station[J]. Engineering and technological research, 2017, 2(10): 76-77.
[14] 石涛. 水上光伏电站站址选择及总平面布置设计要点探讨[J]. 太阳能, 2021(6): 50-57.
SHI T.Discussion on site selection and design points of general layout of PV power station above water[J]. Solar energy, 2021(6): 50-57.
[15] RAWAT R, KAUSHIK S C, LAMBA R.A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system[J]. Renewable and sustainable energy reviews, 2016, 57: 1506-1519.
[16] 刘浩洋. 漂浮式光伏发电系统最大功率追踪技术研究[D]. 太原: 太原理工大学, 2020.
LIU H Y.Research on maximum power tracking technology of floating photovoltaic power generation system[D]. Taiyuan: Taiyuan University of Technology, 2020.
[17] 刘浩洋, 杜欣慧, 裴玥瑶, 等. 针对漂浮式光伏电站最大功率追踪的研究[J]. 电源技术, 2020, 44(1): 72-75.
LIU H Y, DU X H, PEI Y Y, et al.Research on maximum power tracking for floating PV power station[J]. Chinese journal of power sources, 2020, 44(1): 72-75.
[18] 何啸. 海洋漂浮式光伏发电装置性能研究[D]. 宁波: 宁波大学, 2014.
HE X.Research of properties of ocean floating photovoltaic device[D]. Ningbo: Ningbo University, 2014.
[19] 邱国全, 夏艳君, 杨鸿毅. 晴天太阳辐射模型的优化计算[J]. 太阳能学报, 2001, 22(4): 456-460.
QIU G Q, XIA Y J, YANG H Y.An optimized clear-day solar radiation model[J]. Acta energiae solaris sinica, 2001, 22(4): 456-460.
[20] 李博彤, 李明睿, 刘梦晴. 基于通径分析和相空间重构的光伏发电预测模型[J]. 电测与仪表, 2022, 59(11): 79-87.
LI B T, LI M R, LIU M Q.PV power generation forecast model based on path analysis and phase space reconstruction[J]. Electrical measurement & instrumentation, 2022, 59(11): 79-87.
[21] 蒋浩, 洪丽, 张国江. 主成分分析结合神经网络的光伏发电量预测[J]. 电力系统及其自动化学报, 2013, 25(6): 101-105.
JIANG H, HONG L, ZHANG G J.PV generation system forecasting model based on neutral network and principal components analysis[J]. Proceedings of the CSU-EPSA, 2013, 25(6): 101-105.
PDF(1276 KB)

Accesses

Citation

Detail

Sections
Recommended

/