MARKET CLEARING MECHANISM OF FLYWHEEL ENERGY STORAGE PARTICIPATION IN FREQUENCY MODULATION MARKET BASED ON STACKELBERG GAME

Liu Changliang, Huang Jinlong, Zhang Qiliang, Zhao Ya, Liu Weiliang, Liu Shuai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 88-96.

PDF(3755 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3755 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 88-96. DOI: 10.19912/j.0254-0096.tynxb.2024-1081

MARKET CLEARING MECHANISM OF FLYWHEEL ENERGY STORAGE PARTICIPATION IN FREQUENCY MODULATION MARKET BASED ON STACKELBERG GAME

  • Liu Changliang1,2, Huang Jinlong1, Zhang Qiliang1,2, Zhao Ya3, Liu Weiliang1,2, Liu Shuai1,2
Author information +
History +

Abstract

The power market's frequency regulation is being gradually influenced by flywheel energy storage's high frequency modulation performance with the development of new power systems. To address the issue that the traditional marginal clearing method overly focuses on frequency modulation performance and neglects cost-effectiveness, a market clearing strategy for modulating frequency of flywheel energy storage using Stackelberg game is proposed. A cost model for the charge and discharge of flywheel energy storage is developed firstly. To optimize the quote and minimize frequency regulation and auxiliary expenses, the Stackelberg game method is used with consideration of the operational constraints of flywheel energy storage, thermal power units and wind farms. Finally, according to the real-time frequency modulation demand, the clearing is carried out according to the marginal price ordering. The simulation results show that the proposed mechanism ensures a reasonable winning rate and revenue for flywheel energy storage in the frequency modulation market, this aids in lowering the total cost of frequency modulation and enhancing the system's overall performance. Compared with the traditional method, this method improves the frequency modulation income of the unit and effectively promotes the consumption of new energy.

Key words

flywheel / energy storage / wind turbines / frequency modulation / Stackelberg game / thermal power unit / clearing methool

Cite this article

Download Citations
Liu Changliang, Huang Jinlong, Zhang Qiliang, Zhao Ya, Liu Weiliang, Liu Shuai. MARKET CLEARING MECHANISM OF FLYWHEEL ENERGY STORAGE PARTICIPATION IN FREQUENCY MODULATION MARKET BASED ON STACKELBERG GAME[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 88-96 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1081

References

[1] 张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40(11): 3498-3507.
ZHANG J Y, LI M J.Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11): 3498-3507.
[2] 汪梦军, 郭剑波, 马士聪, 等. 新能源电力系统暂态频率稳定分析与调频控制方法综述[J]. 中国电机工程学报, 2023, 43(5): 1672-1694.
WANG M J, GUO J B, MA S C, et al.Review of transient frequency stability analysis and frequency regulation control methods for renewable power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1672-1694.
[3] 陈泽宇, 陈艳波. 计及循环寿命和电能量-调频市场出清的储能自调度策略[J]. 电力系统自动化, 2024, 48(14): 28-41.
CHEN Z Y, CHEN Y B.Self-scheduling strategy of energy storage considering cycle life and clearing of electric power energy-frequency regulation market[J]. Automation of electric power systems, 2024, 48(14): 28-41.
[4] 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746-7764.
WU S Y, ZHOU M, WANG J X, et al.Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(21): 7746-7764.
[5] 孙大雁, 史新红, 冯树海, 等. 全国统一电力市场环境下的电力辅助服务市场体系设计[J]. 电力系统自动化, 2024, 48(4):13-24.
SUN D Y, SHI X H, FENG S H, et al.Design of auxiliary service market system under national unified electricity market[J]. Automation of electric power systems, 2024, 48(4): 13-24.
[6] 许高秀, 王旭, 邓晖, 等. 考虑调频需求及风光出力不确定性的储能系统参与能量-调频市场运行策略[J]. 电网技术, 2023, 47(6): 2317-2330.
XU G X, WANG X, DENG H, et al.Optimal operation strategy of energy storage system’s participation in energy and regulation market considering uncertainties of regulation requirements and wind-photovoltaic output[J]. Power system technology, 2023, 47(6): 2317-2330.
[7] 滕贤亮, 谈超, 昌力, 等. 高比例新能源电力系统有功功率与频率控制研究综述及展望[J]. 电力系统自动化, 2023, 47(15): 12-35.
TENG X L, TAN C, CHANG L, et al.Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J]. Automation of electric power systems, 2023, 47(15): 12-35.
[8] 王傲儿, 赵书强, 宋金历, 等. 考虑新能源与储能参与调频的联合市场出清模型[J].太阳能学报, 2024,45(3): 367-376.
WANG A E, ZHAO S Q, SONG J L, et al.Joint market clearing model considering participation of new energy and energy storage in frequency modulation[J]. Acta energiae solaris sinica, 2024, 45(3): 367-376.
[9] 李军徽, 张靖祥, 穆钢, 等. 辅助服务市场下独立储能调峰调频协同优化调度[J]. 中国电机工程学报, 2025, 45(2): 650-665.
LI J H, ZHANG J X, MU G, et al.Collaborative optimal dispatch of peak shaving and frequency modulation with independent energy storage based on auxiliary service market[J]. Proceedings of the CSEE, 2025, 45(2): 650-665.
[10] 陆秋瑜, 杨银国, 谢平平, 等. 适应储能参与的调频辅助服务市场机制设计及调度策略[J]. 电网技术, 2023, 47(12): 4971-4989.
LU Q Y, YANG Y G, XIE P P, et al.Market mechanism design and scheduling strategy of auxiliary services for frequency control adapting to energy storage participation[J]. Power system technology, 2023, 47(12): 4971-4989.
[11] 郁海彬, 董帅, 陆增洁, 等. 新型电力系统下储能参与电力调峰调频辅助市场的竞标策略[J]. 中国电力, 2023, 56(8): 48-60.
YU H B, DONG S, LU Z J, et al.Bidding strategy of energy storage participating in the auxiliary market of peak and frequency modulation in new power system[J]. Electric power, 2023, 56(8): 48-60.
[12] 徐帆, 戴兴建, 王又珑, 等. 飞轮储能用永磁电机研究进展[J]. 储能科学与技术, 2024, 13(10): 3423-3441.
XU F, DAI X J, WANG Y L, et al.Research progress on permanent magnet machines for flywheel energy storage[J]. Energy storage science and technology, 2024, 13(10): 3423-3441.
[13] 魏波, 罗志炜, 肖峰, 等. 基于提升自动发电控制性能指标的飞轮储能系统调频控制策略研究[J]. 热力发电, 2023, 52(9): 112-120.
WEI B, LUO Z W, XIAO F, et al.Flywheel energy storage system frequency regulation control strategy based on improving AGC performance index[J]. Thermal power generation, 2023, 52(9): 112-120.
[14] 陈彪, 王玮, 高嵩, 等. 计及灵活经济环保运行的火电-飞轮储能系统容量配置与调频参数协同优化[J]. 动力工程学报, 2024, 44(3): 376-384.
CHEN B, WANG W, GAO S, et al.Co-optimization of capacity allocation and frequency control parameters for thermal power-flywheel energy storage system considering flexible, economical and environment friendly operation[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 376-384.
[15] 金都, 刘广忱, 孙博文, 等. 计及风电场的飞轮储能一次调频控制策略[J]. 储能科学与技术, 2024, 13(6): 1911-1920.
JIN D, LIU G C, SUN B W, et al.Primary frequency modulation control strategy for flywheel energy storage counting and wind farms[J]. Energy storage science and technology, 2024, 13(6): 1911-1920.
[16] 魏乐, 苏少忻, 房方, 等. 基于负荷预测的飞轮-火电系统自动发电控制响应性能优化[J]. 热力发电, 2023, 52(5): 92-99.
WEI L, SU S X, FANG F, et al.Optimization of automatic generation control response performance of flywheel-thermal power system based on load forecasting[J]. Thermal power generation, 2023, 52(5): 92-99.
[17] 房方, 刘渝斌, 王冰玉, 等. 基于NSGA-Ⅱ的飞轮-火电联合二次调频最优负荷分配策略[J]. 电力系统自动化, 2024, 48(12): 79-88.
FANG F, LIU Y B, WANG B Y, et al.Optimal load allocation strategy of flywheel-thermal power coordinated secondary frequency regulation based on non-dominated Sorting genetic algorithm-Ⅱ[J]. Automation of electric power systems, 2024, 48(12): 79-88.
[18] 李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报, 2023, 44(1): 426-434.
LI C, QIN L J.Sizing optimization for hybrid energy storage system independently participating in regulation using improved particle swarm optimization[J]. Acta energiae solaris sinica, 2023, 44(1): 426-434.
[19] 时雨, 张忠, 杨晶莹, 等. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373.
SHI Y, ZHANG Z, YANG J Y, et al.Opportunity cost modelling and market strategy of energy storage participating in the AGC market[J]. Energy storage science and technology, 2022, 11(7): 2366-2373.
[20] 国勇健, 李爱魁, 孙威, 等. 考虑价格预测的储能电站调频投标策略[J]. 中国电机工程学报, 2025, 45(13): 5086-5099.
GUO Y J, LI A K, SUN W, et al.Frequency regulation bidding strategy of energy storage power station considering price prediction[J]. Proceedings of the CSEE, 2025, 45(13): 5086-5099.
[21] 陈中飞, 荆朝霞, 陈达鹏, 等. 美国调频辅助服务市场的定价机制分析[J]. 电力系统自动化, 2018, 42(12): 1-10.
CHEN Z F, JING Z X, CHEN D P, et al.Analysis on pricing mechanism in frequency regulation ancillary service market of United States[J]. Automation of electric power systems, 2018, 42(12): 1-10.
[22] 刘永奇, 邹鹏, 燕争上, 等. 山西电力调频市场机制设计与运营实践[J]. 电力系统自动化, 2019, 43(16): 175-182.
LIU Y Q, ZOU P, YAN Z S, et al.Mechanism design and operation practice of Shanxi power frequency regulation market in China[J]. Automation of electric power systems, 2019, 43(16): 175-182.
[23] 张晓东, 艾欣. 基于主从博弈的主动配电网阻塞管理[J].现代电力, 2022, 39(6): 649-658.
ZHANG X D, AI X.The congestion management in active distribution network based on the Stackelberg game[J]. Modern electric power, 2022, 39(6): 649-658.
[24] 王庆, 赵宏, 陈静漪. 考量储能参与电力辅助服务的成本核算方法研究——基于功率型储能、能量型储能的比较分析[J].价格理论与实践, 2024(1): 129-134.
WANG Q, ZHAO H, CHEN J Y, Research on the cost accounting method of considering the participation of energy storage in power ancillary services[J]. Price: theory & practice, 2024(1): 129-134.
[25] 宋兴荣, 吴晋波, 杨志学, 等. 基于多目标粒子群算法的风光水火多源AGC协调优化方法[J]. 重庆大学学报, 2022, 45(7): 13-23.
SONG X R, WU J B, YANG Z X, et al.Multi-source AGC coordination optimization method with Wind-PV-hydro-thermal based on multi-objective particle swarm optimization algorithm[J]. Journal of Chongqing University, 2022, 45(7): 13-23.
[26] 唐琦雯, 沈琪, 祝俊, 等. 浙江调频辅助服务市场机制设计及运营实践[J]. 综合智慧能源, 2022, 44(9): 71-77.
TANG Q W, SHEN Q, ZHU J, et al.Mechanism design and operation practice of Zhejiang frequency regulation ancillary service market[J]. Integrated intelligent energy, 2022, 44(9): 71-77.
PDF(3755 KB)

Accesses

Citation

Detail

Sections
Recommended

/