COMPREHENSIVE EVALUATION OF WHOLE PROCESS UTILIZATION OF HYDROGEN ENERGY UNDER DIFFERENT STORAGE AND TRANSPORTATION MODES

Liang Haifeng, Ran Minghao, Shi Kaikai, Chen Xiaoqi, Tan Lei, Yang Pengwei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 180-188.

PDF(1085 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1085 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 180-188. DOI: 10.19912/j.0254-0096.tynxb.2024-1084

COMPREHENSIVE EVALUATION OF WHOLE PROCESS UTILIZATION OF HYDROGEN ENERGY UNDER DIFFERENT STORAGE AND TRANSPORTATION MODES

  • Liang Haifeng1, Ran Minghao1, Shi Kaikai1, Chen Xiaoqi1, Tan Lei1, Yang Pengwei2
Author information +
History +

Abstract

This paper constructed a full-process hydrogen utilization model that encompasses hydrogen production from renewable energy generation, hydrogen storage and transportation, and power generation using hydrogen fuel cells. Aimed at the entire hydrogen chain of “production-storage-transportation-utilization”, a multi-dimensional comprehensive evaluation system was proposed based on the analytic hierarchy process, entropy weight method , and TOPSIS. This system established multiple evaluation metrics from three dimensions: economy, energy conservation, environmental protection, and technology, to analyze the optimal storage and transportation scheme under different hydrogen demand scenarios. The effectiveness of the constructed model was verified through a specific case study, and the evaluation system was applied to comprehensively rank hydrogen storage and transportation options under various transportation distances. The results demonstrate that the proposed method can provide a theoretical basis for the planning and decision-making of hydrogen energy systems, offering valuable insights for promoting the integration of hydrogen energy into new-type power systems.

Key words

hydrogen production / hydrogen economy / proton exchange membrane fuel cells / hydrogen energy storage and transportation / comprehensive evaluation system

Cite this article

Download Citations
Liang Haifeng, Ran Minghao, Shi Kaikai, Chen Xiaoqi, Tan Lei, Yang Pengwei. COMPREHENSIVE EVALUATION OF WHOLE PROCESS UTILIZATION OF HYDROGEN ENERGY UNDER DIFFERENT STORAGE AND TRANSPORTATION MODES[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 180-188 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1084

References

[1] 潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47(10): 1-13.
PAN G S, GU Z F, LUO E B, et al.Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of electric power systems, 2023, 47(10): 1-13.
[2] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International journal of hydrogen energy, 2013, 38(12): 4901-4934.
[3] 张彦, 陶毅刚, 张韬, 等. 氢能与电力系统融合发展研究[J]. 中外能源, 2021, 26(9): 19-28.
ZHANG Y, TAO Y G, ZHANG T, et al.Research on integrated development of hydrogen energy and power system[J]. Sino-global energy, 2021, 26(9): 19-28.
[4] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[5] 孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京: 华北电力大学(北京), 2017.
KONG L G.Research on optimal sizing and coordinated control Strategy of integrated energy system of wind photovoltaic and hydrogen[D]. Beijing: North China Electric Power University, (Beijing), 2017.
[6] WANG Y, RUIZ DIAZ D F, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells: a review[J]. Materials today, 2020, 32: 178-203.
[7] 李建. 燃料电池发电系统全过程模型的研究[D]. 保定:华北电力大学, 2013.
LI J.Research on the whole process model of fuel cell power system[D]. Baoding: North China Electric Power University, 2013.
[8] 李志伟, 赵雨泽, 吴培. 碳交易机制下绿氢蓝氢协调优化对综合能源系统的影响评估[J]. 太阳能学报, 2024, 45(10): 37-47.
LI Z W, ZHAO Y Z, WU P.Impact assessment of coordinated optimization of green hydrogen and blue hydrogen on integrated energy system under carbon trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(10): 37-47.
[9] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Y F, CHEN L J, ZHENG T W, et al.Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric power automation equipment, 2021, 41(9): 31-38.
[10] 马晓伟, 王文倬, 薛晨, 等. 西北新型电力系统先行示范体系探究[J]. 电网与清洁能源, 2024, 40(1): 1-7.
MA X W, WANG W Z, XUE C, et al.Research on the leading demonstration system of new-type power system in northwest China[J]. Power system and clean energy, 2024, 40(1): 1-7.
[11] KIM J B, HAN G, KWON Y, et al.Thermal design of a hydrogen storage system using La(Ce)Ni5[J]. International journal of hydrogen energy, 2020, 45(15): 8742-8749.
[12] 殷卓成, 杨高, 刘怀, 等. 氢能储运关键技术研究现状及前景分析[J]. 现代化工, 2021, 41(11): 53-57.
YIN Z C, YANG G, LIU H, et al.Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Modern chemical industry, 2021, 41(11): 53-57.
[13] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.
CAO J W, QIN X F, GENG G, et al.Current status and prospects of hydrogen storage and transportation technology[J]. Acta petrolei sinica (petroleum processing section), 2021, 37(6): 1461-1478.
[14] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[15] 周红玉. 基于ANP-TOPSIS的氢能储运技术可持续性评价研究[D]. 武汉: 华中科技大学, 2023.
ZHOU H Y.Sustainability evaluation of hydrogen energy storage and transportation based on ANP and TOPSIS[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[16] 闫喻婷. 氢气储运方式的经济性对比研究[D]. 武汉: 华中科技大学, 2023.
YAN Y T.Comparative analysis of the economics of hydrogen storage and transportation[D]. Wuhan:Huazhong University of Science and Technology, 2023.
[17] 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47(19): 1-15.
GAO J, SONG J, WANG J X, et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of electric power systems, 2023, 47(19): 1-15.
[18] KHAN M J, IQBAL M T.Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system[J]. Renewable energy, 2005, 30(3): 421-439.
[19] HU D H, WANG Y T, LI J W, et al.Investigation of optimal operating temperature for the PEMFC and its tracking control for energy saving in vehicle applications[J]. Energy conversion and management, 2021, 249: 114842.
[20] PAN M Z, LI C, LIAO J Y, et al.Design and modeling of PEM fuel cell based on different flow fields[J]. Energy, 2020, 207: 118331.
[21] 杨顺风, 朱星光, 徐翥. 基于Matlab/Simulink的PEMFC建模与非线性控制[J]. 电源技术, 2014, 38(7): 1251-1254, 1305.
YANG S F, ZHU X G, XU Z.Study on PEMFC modeling and nonlinear control based on Matlab/Simulink[J]. Chinese journal of power sources, 2014, 38(7): 1251-1254, 1305.
[22] 李建林, 胡笳扬, 辛迪熙, 等. 基于参数自调节的电氢耦合系统调频控制策略研究[J]. 高压电器, 2024, 60(7): 1-11.
LI J L, HU J Y, XIN D X.Research on frequency modulation control strategy of electric-hydrogen coupling system based on parameter self-regulation[J]. High voltage apparatus, 2024, 60(7): 1-11.
[23] 胡利华. 燃料电池发电系统应用分析[D]. 重庆: 重庆大学, 2005.
HU L H.Analysis of fuel cell generation system application[D]. Chongqing: Chongqing University, 2005.
[24] 任静影, 章桐, 胡潇. 面向仿真的质子交换膜燃料电池经验模型研究综述[J]. 机电一体化, 2022, 28(1): 3-14.
REN J Y, ZHANG T, HU X.Review of simulation-oriented empirical models for proton exchange membrane fuel cells[J]. Mechatronics, 2022, 28(1): 3-14.
[25] LI J R, LIN J, SONG Y H.Capacity optimization of hydrogen buffer tanks in renewable power to ammonia (P2A) system[C]//2020 IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC, Canada, 2020: 1-5.
[26] 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681.
WANG S B, KONG L G, CAI G W, et al.Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681.
PDF(1085 KB)

Accesses

Citation

Detail

Sections
Recommended

/