MULTI-OBJECTIVE OPTIMIZATION STUDY OF PHOTOVOLTAIC THERMOELECTRIC COUPLING SYSTEM

Yang Qixiu, Zhang Chenyu, Xu Hongtao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 276-284.

PDF(1144 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1144 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 276-284. DOI: 10.19912/j.0254-0096.tynxb.2024-1092

MULTI-OBJECTIVE OPTIMIZATION STUDY OF PHOTOVOLTAIC THERMOELECTRIC COUPLING SYSTEM

  • Yang Qixiu, Zhang Chenyu, Xu Hongtao
Author information +
History +

Abstract

A mathematical model of the PV-thermoelectric coupling system is established based on thermal resistance theory. The improved multi-objective particle swarm optimization (MOPSO) algorithm is adopted, with maximum efficiency and output power as the optimization objectives. Simultaneously, the design variables include the cross-sectional area of the hot and cold sides of the thermoelectric element, the height of the thermoelectric element, the load resistance, and the concentrator ratio. The effects of different flow rates of nanofluids on the optimization results are also discussed. The results indicate that maximum efficiency and output power constrain each other and exhibit a non-linear relationship. Furthermore, the optimized performance of the coupled system surpasses that of a single photovoltaic system significantly, with efficiency and output power being maximally improved by 22.44% and 12.33% respectively compared to a single photovoltaic system. Moreover, the impact of increasing the nanofluid flow rate on system performance is not consistently beneficial. The coupled system performance is significantly influenced by the thermoelectric structure. An element height of approximately 1.073 mm is more compatible with this system. The system performance of non-equal cross-section thermoelectric elements is significantly better than that of equal cross-section elements. Maximum efficiency is achieved when S equals 2.27. TOPSIS effectively balances the efficiency and output power of the coupled system. The output power of the optimal compromise scheme increases by 283.01% compared to the efficiency maximization scheme, with only a 14.36% reduction in efficiency.

Key words

solar energy / thermoelectricity / multiobjective optimization / photovoltaic-thermoelectric coupled system / particle swarm algorithm

Cite this article

Download Citations
Yang Qixiu, Zhang Chenyu, Xu Hongtao. MULTI-OBJECTIVE OPTIMIZATION STUDY OF PHOTOVOLTAIC THERMOELECTRIC COUPLING SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 276-284 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1092

References

[1] KARAMI LAKEH H, KAATUZIAN H, HOSSEINI R.A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell[J]. Renewable energy, 2019, 138: 542-550.
[2] YIN E S, LI Q, XUAN Y M.Optimal design method for concentrating photovoltaic-thermoelectric hybrid system[J]. Applied energy, 2018, 226: 320-329.
[3] MANKANI K, NASARULLAH CHAUDHRY H, KAISER CALAUTIT J.Optimization of an air-cooled heat sink for cooling of a solar photovoltaic panel: a computational study[J]. Energy and buildings, 2022, 270: 112274.
[4] 王宁, 徐洪涛, 张晨宇, 等. 菲涅尔透镜聚光光伏光热耦合系统性能模拟研究[J]. 热能动力工程, 2019, 34(11): 123-130.
WANG N, XU H T, ZHANG C Y, et al.Performance analysis of concentrated photovoltaic thermal coupled system with Fresnel lens[J]. Journal of engineering for thermal energy and power, 2019, 34(11): 123-130.
[5] 李昊琦, 魏利平, 庄子贤, 等. 光伏相变系统温控特性及散热结构优化设计[J]. 太阳能学报, 2022, 43(9): 57-63.
LI H Q, WEI L P, ZHUANG Z X, et al.Temperature control characteristics and heat dissipation structure optimization design of photovoltaic phase change system[J]. Acta energiae solaris sinica, 2022, 43(9): 57-63.
[6] 章文杰, 张佳俊, 田秀丰, 等. 半透明晶体硅光伏热电制冷辐射窗的性能分析[J]. 太阳能学报, 2022, 43(9): 45-51.
ZHANG W J, ZHANG J J, TIAN X F, et al.Performance analysis of semi-transparent crystalline silicon photovoltaic thermoelectric cooling radiation window[J]. Acta energiae solaris sinica, 2022, 43(9): 45-51.
[7] LI G Q, SHITTU S, DIALLO T M O, et al. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation[J]. Energy, 2018, 158: 41-58.
[8] FALLAH KOHAN H R, LOTFIPOUR F, ESLAMI M. Numerical simulation of a photovoltaic thermoelectric hybrid power generation system[J]. Solar energy, 2018, 174: 537-548.
[9] LI G Q, CHEN X, JIN Y, et al.Optimizing on thermoelectric elements footprint of the photovoltaic-thermoelectric for maximum power generation[J]. Energy procedia, 2017, 142: 730-735.
[10] REZANIA A, ROSENDAHL L A.Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system[J]. Applied energy, 2017, 187: 380-389.
[11] YUSUF A, BALLIKAYA S.Thermal resistance analysis of trapezoidal concentrated photovoltaic-thermoelectric systems[J]. Energy conversion and management, 2021, 250: 114908.
[12] KWAN T H, WU X F.Power and mass optimization of the hybrid solar panel and thermoelectric generators[J]. Applied energy, 2016, 165: 297-307.
[13] YIN E S, LI Q.Multi-objective optimization of a concentrated spectrum splitting photovoltaic-thermoelectric hybrid system[J]. Applied thermal engineering, 2023, 219: 119518.
[14] MIRZA A F, MANSOOR M, ZERBAKHT K, et al.High-efficiency hybrid PV-TEG system with intelligent control to harvest maximum energy under various non-static operating conditions[J]. Journal of cleaner production, 2021, 320: 128643.
[15] 张亮, 毕宜鑫, 张高明, 等. 平板型光伏/光热系统高效换热数值模拟研究[J]. 太阳能学报, 2022, 43(7): 159-165.
ZHANG L, BI Y X, ZHANG G M, et al.Numerical investigation on high-efficiency heat transfer of plate photovoltaic/thermal systems[J]. Acta energiae solaris sinica, 2022, 43(7): 159-165.
[16] GE M H, ZHAO Y T, LI Y Z, et al.Structural optimization of thermoelectric modules in a concentration photovoltaic-thermoelectric hybrid system[J]. Energy, 2022, 244: 123202.
[17] KOLAHAN A, MAADI S R, KAZEMIAN A, et al.Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator[J]. Energy conversion and management, 2020, 220: 113073.
[18] WU Y Y, WU S Y, XIAO L.Performance analysis of photovoltaic-thermoelectric hybrid system with and without glass cover[J]. Energy conversion and management, 2015, 93: 151-159.
[19] ALJAGHTHAM M.A comparative performance analysis of thermoelectric generators with a novel leg geometries[J]. Energy reports, 2024, 11: 859-876.
[20] GU W B, MA T, SONG A T, et al.Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system[J]. Energy conversion and management, 2019, 198: 111800.
[21] 殷二帅, 李强. 光伏热电耦合系统热阻分析及优化[J]. 工程热物理学报, 2017, 38(4): 828-832.
YIN E S, LI Q.Optimization of photovoltaic-thermoelectric hybrid system through thermal resistance analysis[J]. Journal of engineering thermophysics, 2017, 38(4): 828-832.
[22] SHIH H S, SHYUR H J, LEE E S.An extension of TOPSIS for group decision making[J]. Mathematical and computer modelling, 2007, 45(7/8): 801-813.
PDF(1144 KB)

Accesses

Citation

Detail

Sections
Recommended

/