DOUBLE VECTOR ALTERNATING SEQUENTIAL MODEL PREDICTIVE CONTROL WITH PARAMETER IDENTIFICATION FOR FLYWHEEL ENERGY STORAGE SYSTEM

Zhang Jianwei, Yu Yan, Wen Sufang, Tian Guizhen, Liu Guangchen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 97-106.

PDF(5341 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5341 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 97-106. DOI: 10.19912/j.0254-0096.tynxb.2024-1093

DOUBLE VECTOR ALTERNATING SEQUENTIAL MODEL PREDICTIVE CONTROL WITH PARAMETER IDENTIFICATION FOR FLYWHEEL ENERGY STORAGE SYSTEM

  • Zhang Jianwei1,2, Yu Yan1, Wen Sufang1,2, Tian Guizhen1,2, Liu Guangchen1,2
Author information +
History +

Abstract

To improve the control accuracy of permanent magnet synchronous machine in the flywheel energy storage system (FESS), an improved model predictive control strategy is proposed. Firstly, by alternately evaluating the cost functions of torque and flux, the weighting factor is eliminated and there is no need to determine the priority of control objectives in this proposed method. The proposed method effectively balances the control performance of torque and flux. Subsequently, to reduce the torque and flux fluctuations of the FESS, a double-vector synthesis method is designed and the duty cycle calculation process is simplified. In addition, to improve the parameter robustness of the system, the least squares method is used to identify the machine parameters and update the controller parameters in real time. Finally, the feasibility and effectiveness of the proposed control strategy in FESS charging and discharging conditions are experimentally verified.

Key words

energy storage / model predictive control / flywheel energy storage system / permanent magnet synchronous machine / parameter identification

Cite this article

Download Citations
Zhang Jianwei, Yu Yan, Wen Sufang, Tian Guizhen, Liu Guangchen. DOUBLE VECTOR ALTERNATING SEQUENTIAL MODEL PREDICTIVE CONTROL WITH PARAMETER IDENTIFICATION FOR FLYWHEEL ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 97-106 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1093

References

[1] ZHANG J W, WANG Y H, LIU G C, et al.A review of control strategies for flywheel energy storage system and a case study with matrix converter[J]. Energy reports, 2022, 8: 3948-3963.
[2] 李红, 储江伟, 孙术发, 等. 车用飞轮混合动力系统的应用进展[J]. 储能科学与技术, 2021, 10(2): 534-543.
LI H, CHU J W, SUN S F, et al.Application progress of flywheel hybrid powertrain in vehicle[J]. Energy storage science and technology, 2021, 10(2): 534-543.
[3] 齐洪峰. 飞轮储能与轨道交通系统技术融合发展现状[J]. 电源技术, 2022, 46(2): 137-140.
QI H F.Progress of technology integration between flywheel energy storage and rail transportation system[J]. Chinese journal of power sources, 2022, 46(2): 137-140.
[4] 聂永辉, 张丽丽, 张立栋, 等. 一种基于VSG的风电机组与飞轮储能协调控制方法[J]. 太阳能学报, 2021, 42(8): 387-393.
NIE Y H, ZHANG L L, ZHANG L D, et al.A VSG-based coordinated control method for wind turbine and flywheel energy storage[J]. Acta energiae solaris sinica, 2021, 42(8): 387-393.
[5] 李宇航. 飞轮储能高速永磁同步电机控制策略的研究[D]. 杭州: 杭州电子科技大学, 2023.
LI Y H.Research on control strategy of flywheel energy storage high speed permanent magnet synchronous motor[D]. Hangzhou: Hangzhou Dianzi University, 2023.
[6] 胡金明, 孙玉田, 李桂芬, 等. 大容量飞轮储能永磁电机控制策略研究[J]. 大电机技术, 2023(3): 20-27.
HU J M, SUN Y T, LI G F, et al.Research on the control strategy of large capacity flywheel energy storage permanent magnet motor[J]. Large electric machine and hydraulic turbine, 2023(3): 20-27.
[7] 张建伟, 刘庆, 田桂珍, 等. 飞轮储能系统的充放电复合控制策略与应用研究[J]. 内蒙古工业大学学报(自然科学版), 2022, 41(5): 451-457.
ZHANG J W, LIU Q, TIAN G Z, et al.Research on charge-discharge composite control strategy and application of flywheel energy storage system[J]. Journal of Inner Mongolia University of Technology (natural science edition), 2022, 41(5): 451-457.
[8] 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计[J]. 太阳能学报, 2021, 42(3): 105-113.
ZHOU H, LI J H, GE C X, et al.Design of energy management system for flywheel energy storage system to improve power quality of wind power integration[J]. Acta energiae solaris sinica, 2021, 42(3): 105-113.
[9] 于苏杭, 郭文勇, 滕玉平, 等. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642.
YU S H, GUO W Y, TENG Y P, et al.A review of the structures and control strategies for flywheel bearings[J]. Energy storage science and technology, 2021, 10(5): 1631-1642.
[10] 申向杰, 胡宏锦, 魏静波, 等. 一种直流侧电压调节的反作用飞轮直接转矩控制方法[J]. 航天控制, 2022, 40(5): 79-86.
SHEN X J, HU H J, WEI J B, et al.A direct torque control method of reaction flywheel with DC side voltage regulation[J]. Aerospace control, 2022, 40(5): 79-86.
[11] LI X L, XUE Z W, YAN X Y, et al.Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection[J]. IEEE transactions on power electronics, 2021, 36(10): 11726-11738.
[12] LEI M Z, MENG K, FENG H N, et al.Flywheel energy storage controlled by model predictive control to achieve smooth short-term high-frequency wind power[J]. Journal of energy storage, 2023, 63: 106949.
[13] GHANAATIAN M, LOTFIFARD S.Control of flywheel energy storage systems in the presence of uncertainties[J]. IEEE transactions on sustainable energy, 2019, 10(1): 36-45.
[14] 武鑫, 李洋涛, 马志勇, 等. 基于改进小波包分解的混合储能系统容量配置方法[J]. 太阳能学报, 2023, 44(8): 23-29.
WU X, LI Y T, MA Z Y, et al.Capacity configuration method of hybrid energy storage system based on improved wavelet packet decomposition[J]. Acta energiae solaris sinica, 2023, 44(8): 23-29.
[15] GRIMM F, KOLAHIAN P, ZHANG Z B, et al.A sphere decoding algorithm for multistep sequential model-predictive control[J]. IEEE transactions on industry applications, 2021, 57(3): 2931-2940.
[16] NORAMBUENA M, RODRIGUEZ J, ZHANG Z B, et al.A very simple strategy for high-quality performance of AC machines using model predictive control[J]. IEEE transactions on power electronics, 2019, 34(1): 794-800.
[17] 李祥林, 薛志伟, 阎学雨, 等. 基于电压矢量快速筛选的永磁同步电机三矢量模型预测转矩控制[J]. 电工技术学报, 2022, 37(7): 1666-1678.
LI X L, XUE Z W, YAN X Y, et al.Voltage vector rapid screening-based three-vector model predictive torque control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1666-1678.
[18] XIAO D, ALAM K S, NORAMBUENA M, et al.Modified modulated model predictive control strategy for a grid-connected converter[J]. IEEE transactions on industrial electronics, 2021, 68(1): 575-585.
[19] 徐伟, 董定昊, 葛健, 等. 基于在线参数辨识补偿的直线感应电机低开关频率模型预测控制策略[J]. 电工技术学报, 2022, 37(16): 4116-4133.
XU W, DONG D H, GE J, et al.Low switching frequency model predictive control strategy based on online parameter identification compensation of linear induction motor for urban rail application[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4116-4133.
[20] 姚绪梁, 黄乘齐, 王景芳, 等. 具有参数辨识功能的永磁同步电机双矢量模型预测电流控制[J]. 中国电机工程学报, 2023, 43(23): 9319-9330.
YAO X L, HUANG S Q, WANG J F, et al.A two-vector-based model predictive current control with online parameter identification for PMSM drives[J]. Transactions of China Electrotechnical Society, 2023, 43(23): 9319-9330.
[21] 杨帆, 赵希梅, 金鸿雁, 等. 基于无参数PMSM的自适应有限集模型预测控制[J]. 中国电机工程学报, 2023, 43(22): 8935-8944.
YANG F, ZHAO X M, JIN H Y, et al.Parameter-free adaptive finite control set model predictive control for PMSM[J]. Proceedings of the CSEE, 2023, 43(22): 8935-8944.
[22] ZHANG Y C, ZHANG B Y, YANG H T, et al.Generalized sequential model predictive control of IM drives with field-weakening ability[J]. IEEE transactions on power electronics, 2019, 34(9): 8944-8955.
PDF(5341 KB)

Accesses

Citation

Detail

Sections
Recommended

/