OPTIMIZATION CONFIGURATION METHOD FOR MICRO-METEOROLOGICAL MONITORING DEVICE IN URBAN POWER GRIDS WITH HIGH PROPORTION OF DISTRIBUTED PHOTOVOLTAICS BASED ON COMPREHENSIVE NODE CRITICALITY

Fang Zehui, Tang Yi, Hu Jianxiong, Xu Xiaochun, Li Jiangcheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 302-312.

PDF(3762 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3762 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 302-312. DOI: 10.19912/j.0254-0096.tynxb.2024-1103

OPTIMIZATION CONFIGURATION METHOD FOR MICRO-METEOROLOGICAL MONITORING DEVICE IN URBAN POWER GRIDS WITH HIGH PROPORTION OF DISTRIBUTED PHOTOVOLTAICS BASED ON COMPREHENSIVE NODE CRITICALITY

  • Fang Zehui1, Tang Yi1, Hu Jianxiong1, Xu Xiaochun2, Li Jiangcheng2
Author information +
History +

Abstract

In order to solve the problem of significant forecasting errors in distributed photovoltaic(PV) output caused by complex urban micro-meteorological condition, a global optimization approach is proposed for the deployment of micro-meteorological monitoring devices, with considering of a comprehensive node criticality metric. Firstly, an integrated electrical-meteorological node criticality index is developed by combining distribution network voltage characteristics with urban micro-meteorological influences. Then, a global optimization model for monitoring device placement is constructed and solved using a genetic algorithm. Case study results demonstrate that the proposed method effectively improves the optimal operation capability of urban power grids with high penetration of distributed PV based on the observability, flexibility, and cost-efficiency of micro-meteorological monitoring systems.

Key words

urban power grid / distributed photovoltaics / microclinmate / genetic algorithm / node criticality / optimal configuration

Cite this article

Download Citations
Fang Zehui, Tang Yi, Hu Jianxiong, Xu Xiaochun, Li Jiangcheng. OPTIMIZATION CONFIGURATION METHOD FOR MICRO-METEOROLOGICAL MONITORING DEVICE IN URBAN POWER GRIDS WITH HIGH PROPORTION OF DISTRIBUTED PHOTOVOLTAICS BASED ON COMPREHENSIVE NODE CRITICALITY[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 302-312 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1103

References

[1] 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41(9): 12-18.
LU Z X, HUANG H, SHAN B G, et al.Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 12-18.
[2] 张敏, 刘进, 林江刚, 等. “双碳” 背景下屋顶分布式光伏开发环境效益分析[J]. 能源研究与利用, 2021(6): 37-41.
ZHANG M, LIU J, LIN J G, et al.Environmental benefit analysis of roof distributed photovoltaic development under the background of “double carbon”[J]. Energy research & utilization, 2021(6): 37-41.
[3] LI P S, WU Z J, ZHANG C, et al.Multi-timescale affinely adjustable robust reactive power dispatch of distribution networks integrated with high penetration of PV[J]. Journal of modern power systems and clean energy, 2023, 11(1): 324-334.
[4] 栗峰, 丁杰, 周才期, 等. 新型电力系统下分布式光伏规模化并网运行关键技术探讨[J]. 电网技术, 2024, 48(1): 184-199.
LI F, DING J, ZHOU C Q, et al.Key technologies of large-scale grid-connected operation of distributed photovoltaic under new-type power system[J]. Power system technology, 2024, 48(1): 184-199.
[5] OLIVIER F, ARISTIDOU P, ERNST D, et al.Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units[J]. IEEE transactions on smart grid, 2016, 7(2): 926-936.
[6] HAGHDADI N, BRUCE A, MACGILL I, et al.Impact of distributed photovoltaic systems on zone substation peak demand[J]. IEEE transactions on sustainable energy, 2018, 9(2): 621-629.
[7] ARGÜELLO A, LARA J D, ROJAS J D, et al. Impact of rooftop PV integration in distribution systems considering socioeconomic factors[J]. IEEE systems journal, 2018, 12(4): 3531-3542.
[8] 马小敏, 王超, 袁志, 等. 基于气象参数聚类分析的高原地区输电线路在线监测装置电源选择[J]. 四川电力技术, 2020, 43(5): 5-10.
MA X M, WANG C, YUAN Z, et al.Selection of power supply mode of transmission monitoring device in plateau area based on clustering analysis of meteorological parameters[J]. Sichuan electric power technology, 2020, 43(5): 5-10.
[9] 蒋海玮, 徐永海, 何志轩, 等. 考虑系统参数不确定性的谐波谐振监测点优化配置方法[J]. 电力系统自动化, 2021, 45(23): 141-151.
JIANG H W, XU Y H, HE Z X, et al.Optimal placement method for harmonic resonance monitoring points considering uncertainties of system parameters[J]. Automation of electric power systems, 2021, 45(23): 141-151.
[10] 胡明峰, 刘洋, 华斌. 量测装置优化配置下的分布式配电网故障定位方法[J]. 电网技术, 2021, 45(7): 2616-2622.
HU M F, LIU Y, HUA B.Distributed fault location for distribution networks under optimal configuration of measuring devices[J]. Power system technology, 2021, 45(7): 2616-2622.
[11] 张林利, 刘洋, 李立生, 等.基于主元子空间的主动配电网量测设备关键配置位置识别[J]. 电力自动化设备, 2017, 37(11): 54-58.
ZHANG L L, LIU Y, LI L S, et al.Key configuration location identification of measurement equipment in active distribution network based on principal component subspace[J]. Electric power automation equipment, 2017, 37(11): 54-58.
[12] PRASAD S, VINOD KUMAR D M. Trade-offs in PMU and IED deployment for active distribution state estimation using multi-objective evolutionary algorithm[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1298-1307.
[13] 胡俊新. 分布式光伏发电系统安装过程中对屋面的影响及用电安全分析[J]. 智能城市, 2018, 4(4): 54-55.
HU J X.Influence of distributed photovoltaic power generation system on roof during installation and power safety analysis[J]. Intelligent city, 2018, 4(4): 54-55.
[14] 于瑛, 姚星, 丑锦帅, 等. 城镇典型住宅建筑屋顶分布式光伏系统潜能分析[J]. 太阳能学报, 2023, 44(7): 182-190.
YU Y, YAO X, CHOU J S, et al.Potential analysis of distributed pv systems on roof of typical residential building in urban area[J]. Acta energiae solaris sinica, 2023, 44(7): 182-190.
[15] 张子豪. 工业型街区太阳能光伏利用潜力及设计策略研究: 以武汉市为例[D]. 武汉: 华中科技大学, 2019.
ZHANG Z H.Study on the utilization potential and design strategy of solar photovoltaic in industrial blocks: taking Wuhan as an example[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[16] VULKAN A, KLOOG I, DORMAN M, et al.Modeling the potential for PV installation in residential buildings in dense urban areas[J]. Energy and buildings, 2018, 169: 97-109.
[17] 左伟杰, 马钊, 周莉梅, 等. 基于配电网电能质量健康评估策略的分布式光伏接入方法[J]. 电网技术, 2015, 39(12): 3442-3448.
ZUO W J, MA Z, ZHOU L M, et al.Grid-connection of distributed photovoltaic generation method based on the power quality health status of distribution system[J]. Power system technology, 2015, 39(12): 3442-3448.
[18] 于昊正, 赵寒杰, 李科, 等. 计及需求响应的分布式光伏集群承载能力评估[J]. 电力建设, 2023, 44(2): 122-131.
YU H Z, ZHAO H J, LI K, et al.Carrying capacity evaluation of distribution network for distributed photovoltaic cluster considering user-side demand response[J]. Electric power construction, 2023, 44(2): 122-131.
[19] 孙媛媛, 程凯强, 许庆燊, 等. 考虑光伏出力相关性的主动配电网薄弱环节识别[J]. 电力系统自动化, 2022, 46(15): 96-103.
SUN Y Y, CHENG K Q, XU Q S, et al.Identification of weak link for active distribution network considering correlation of photovoltaic output[J]. Automation of electric power systems, 2022, 46(15): 96-103.
[20] 张海春, 陈望达, 沈浚, 等. 计及灵活性资源的配电网韧性研究评述[J]. 电力建设, 2023, 44(12): 66-84.
ZHANG H C, CHEN W D, SHEN J, et al.Review of power distribution network resilience studies considering flexibility resources[J]. Electric power construction, 2023, 44(12): 66-84.
[21] 陈丽娟, 刘丽, 周昶, 等. 计及运行风险与韧性的综合能源系统薄弱环节辨识[J]. 电力系统自动化, 2022, 46(6): 48-57.
CHEN L J, LIU L, ZHOU C, et al.Weakness identification of integrated energy systems considering operation risk and resilience[J]. Automation of electric power systems, 2022, 46(6): 48-57.
[22] 王海云, 于希娟, 张雨璇, 等. 大型城市电网下分布式光伏承载力评估分析[J]. 太阳能学报, 2023, 44(6): 260-264.
WANG H Y, YU X J, ZHANG Y X, et al.Evaluation and analysis of distributed photovoltaic carrying capacity in large urban power grid[J]. Acta energiae solaris sinica, 2023, 44(6): 260-264.
[23] 李佳, 刘天琪, 陈亮, 等. 基于理想点法的多准则综合灵敏度电压稳定评估指标[J]. 电力自动化设备, 2014, 34(3): 108-112.
LI J, LIU T Q, CHEN L, et al.Multi-criterion integrated-sensitivity voltage stability evaluation index based on ideal point method[J]. Electric power automation equipment, 2014, 34(3): 108-112.
[24] 熊正勇, 陈天华, 杜磊, 等. 基于改进灵敏度分析的有源配电网智能软开关优化配置[J]. 电力系统自动化, 2021, 45(8): 129-137.
XIONG Z Y, CHEN T H, DU L, et al.Optimal allocation of soft open point in active distribution network based on improved sensitivity analysis[J]. Automation of electric power systems, 2021, 45(8): 129-137.
[25] 靳岩. 基于微气象的分布式光伏出力预测研究[D]. 兰州: 兰州交通大学, 2022.
JIN Y.Research on distributed photovoltaic output prediction based on micro-meteorology[D]. Lanzhou: Lanzhou Jiatong University, 2022.
[26] 温岩, 赵东, 袁春红, 等. 积尘对光伏系统发电的影响研究综述[J]. 太阳能, 2014(11): 36-41.
WEN Y, ZHAO D, YUAN C H, et al.Review on the influence of dust accumulation on photovoltaic system power generation[J]. Solar energy, 2014(11): 36-41.
[27] 姚磊, 付豪, 马科飞, 等. 高速公路边坡光伏组件表面灰尘粘附性能研究[J]. 太阳能学报, 2024, 45(4): 460-467.
YAO L, FU H, MA K F, et al.Performance study of dust adhesion of PV module surfaces on highway slope[J]. Acta energiae solaris sinica, 2024, 45(4): 460-467.
[28] 刘卫亮, 刘长良, 林永君, 等. 计及雾霾影响因素的光伏发电超短期功率预测[J]. 中国电机工程学报, 2018, 38(14): 4086-4095, 4315.
LIU W L, LIU C L, LIN Y J, et al.Super short-term photovoltaic power forecasting considering influence factor of smog[J]. Proceedings of the CSEE, 2018, 38(14): 4086-4095, 4315.
[29] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHEN Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
PDF(3762 KB)

Accesses

Citation

Detail

Sections
Recommended

/