OPTIMIZATION SCHEDULING OF ELECTRIC VEHICLES PARTICIPATING IN INTEGRATED ENERGY SYSTEMS BASED ON STACKELBERG GAME UNDER UNCERTAIN FACTORS

Wang Kaiyan, Liu Haoyu, Dang Jian, Jia Rong, He Hengxiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 516-525.

PDF(1745 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1745 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (10) : 516-525. DOI: 10.19912/j.0254-0096.tynxb.2024-1104

OPTIMIZATION SCHEDULING OF ELECTRIC VEHICLES PARTICIPATING IN INTEGRATED ENERGY SYSTEMS BASED ON STACKELBERG GAME UNDER UNCERTAIN FACTORS

  • Wang Kaiyan, Liu Haoyu, Dang Jian, Jia Rong, He Hengxiang
Author information +
History +

Abstract

To achieve mutual benefit between integrated energy systems (IES) and Vehicle-to-Grid(V2G) charging stations, a bilevel optimization method based on a leader-follower game under uncertain factors is proposed. Firstly, the IES is set as the upper-level leader and the V2G charging station as the lower-level follower. The objective of the upper level is to minimize the operating cost of the IES by formulating time-varying charging and discharging prices to guide the lower-level users in adjusting the charging and discharging power of the V2G charging station. The lower level aims to minimize the total charging cost of the V2G charging station and responsed based on the price information set by the upper level, thus constructing a leader-follower game model. Then, based on the multi-scenario method, the conditional value-at-risk (CVaR) is introduced to measure the risk loss caused by the uncertainty of wind and solar power output on system operation. Using the Karush-Kuhn-Tucker conditions and strong duality theorem, the original bilevel game model is transformed into a single-level mixed-integer linear programming problem to compute the Nash equilibrium solution, thereby obtaining the optimal operation and pricing scheme. Results show that the proposed method can balance the economic interests of different entities within the IES and V2G charging stations, achieve a balance between operating costs and risk costs, ensure the consumption of renewable energy and promote carbon reduction.

Key words

integrated energy system / optimal scheduling / electric vehicle / Stackelberg game / conditional value-at-risk

Cite this article

Download Citations
Wang Kaiyan, Liu Haoyu, Dang Jian, Jia Rong, He Hengxiang. OPTIMIZATION SCHEDULING OF ELECTRIC VEHICLES PARTICIPATING IN INTEGRATED ENERGY SYSTEMS BASED ON STACKELBERG GAME UNDER UNCERTAIN FACTORS[J]. Acta Energiae Solaris Sinica. 2025, 46(10): 516-525 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1104

References

[1] 朱西平, 江强, 钟宇, 等. 计及前瞻风险的综合能源系统低碳经济调度优化[J]. 太阳能学报, 2023, 44(6): 113-121.
ZHU X P, JIANG Q, ZHONG Y, et al.Low-carbon economic dispatch optimization of integrated energy system considering forward-looking risks[J]. Acta energiae solaris sinica, 2023, 44(6): 113-121.
[2] 安源, 苏瑞, 郑申印, 等. 计及碳交易和源-荷侧资源的综合能源系统低碳经济优化[J]. 太阳能学报, 2023, 44(11): 547-555.
AN Y, SU R, ZHENG S Y, et al.Low carbon economic optimization of integrated energy system considering carbon trading and source-load side resources[J]. Acta energiae solaris sinica, 2023, 44(11): 547-555.
[3] 李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21.
LI X Y, TAN X Y, WU R, et al.Paths for carbon peak and carbon neutrality in transport sector in China[J]. Strategic study of CAE, 2021, 23(6): 15-21.
[4] VAGROPOULOS S I, BALASKAS G A, BAKIRTZIS A G.An investigation of plug-in electric vehicle charging impact on power systems scheduling and energy costs[J]. IEEE transactions on power systems, 2017, 32(3): 1902-1912.
[5] 杨镜司, 秦文萍, 史文龙, 等. 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度[J]. 电工技术学报, 2022, 37(1): 58-71.
YANG J S, QIN W P, SHI W L, et al.Two-stage optimal dispatching of regional power grid based on electric vehicles’participation in peak-shaving pricing strategy[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 58-71.
[6] 王璐瑶, 刘卫亮, 刘长良, 等. 计及电-热-氢负荷与动态重构的主动配电网优化调度[J]. 太阳能学报, 2025, 46(1): 460-471.
WANG L Y, LIU W L, LIU C L, et al.Optimal scheduling of active distribution network taking into account electricity-heat-hydrogen load and dynamic reconfiguration[J]. Acta energiae solaris sinica, 2025, 46(1): 460-471.
[7] 肖秋瑶, 杨騉, 宋政湘. 考虑碳交易和电动汽车充电负荷的工业园区综合能源系统调度策略[J]. 高电压技术, 2023, 49(4): 1392-1401.
XIAO Q Y, YANG K, SONG Z X.Scheduling strategy of industrial parks integrated energy system considering carbon trading and electric vehicle charging load[J]. High voltage engineering, 2023, 49(4): 1392-1401.
[8] 高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47(18): 60-67.
GAO S, DAI R X.Charging control strategy for electric vehicle aggregation participating in frequency regulation ancillary service market[J]. Automation of electric power systems, 2023, 47(18): 60-67.
[9] 王义, 靳梓康, 王要强, 等. 考虑电动汽车共享储能特性的园区综合能源系统低碳运行[J]. 电力系统自动化, 2024, 48(5): 21-29.
WANG Y, JIN Z K, WANG Y Q, et al.Low-carbon operation of park-level integrated energy system considering shared energy storage features of electric vehicles[J]. Automation of electric power systems, 2024, 48(5): 21-29.
[10] 颜宁, 马广超, 李相俊, 等. 考虑跨季节性储能的园区综合能源系统低碳经济调度方法[J]. 高电压技术, 2023, 49(10): 4182-4191.
YAN N, MA G C, LI X J, et al.Low-carbon economic dispatch method of park integrated energy system considering cross-seasonal energy storage[J]. High voltage engineering, 2023, 49(10): 4182-4191.
[11] 张虹, 张瑞芳, 周建丞, 等. 基于主从博弈和混合碳政策的园区综合能源系统低碳经济调度[J]. 太阳能学报, 2023, 44(9): 9-17.
ZHANG H, ZHANG R F, ZHOU J C, et al.Low-carbon economic dispatch of integrated energy system in campus based on Stackelberg game and hybrid carbon policy[J]. Acta energiae solaris sinica, 2023, 44(9): 9-17.
[12] 华昊辰, 吴浩星, 陈星莺, 等. 考虑用能经济性与用户满意度灵活协同的综合能源系统双层优化[J]. 电网技术, 2024, 48(10): 4174-4188.
HUA H C, WU H X, CHEN X Y, et al.Double-layer optimization of integrated energy systems considering flexible collaboration between energy economy and user satisfaction[J]. Power system technology, 2024, 48(10): 4174-4188.
[13] 韩丽, 喻洪波, 王冲, 等. 考虑建筑物热惯性的综合能源系统主从博弈协调优化策略[J]. 太阳能学报, 2024, 45(9): 197-209.
HAN L, YU H B, WANG C, et al.Coordinated optimization strategy of Stackelberg game for integrated energy systems considering thermal inertia of buildings[J]. Acta energiae solaris sinica, 2024, 45(9): 197-209.
[14] 王开艳, 梁岩, 贾嵘, 等. 不确定环境下基于纳什谈判的含掺氢燃气综合能源多微网两阶段优化调度[J]. 电网技术, 2023, 47(8): 3141-3159.
WANG K Y, LIANG Y, JIA R, et al.Two-stage optimal scheduling of Nash negotiation-based integrated energy multi-microgrids with hydrogen-doped gas under uncertain environment[J]. Power system technology, 2023, 47(8): 3141-3159.
[15] 王秋杰, 亓浩, 谭洪, 等. 考虑碳市场风险的热电联产虚拟电厂低碳调度[J]. 电力自动化设备, 2024, 44(10): 8-15.
WANG Q J, QI H, TAN H, et al.Low-carbon scheduling of CHP virtual power plant considering carbon market risk[J]. Electric power automation equipment, 2024, 44(10): 8-15.
[16] 孙毅, 李飞, 胡亚杰, 等. 计及条件风险价值和综合需求响应的产消者能量共享激励策略[J]. 电工技术学报, 2023, 38(9): 2448-2463.
SUN Y, LI F, HU Y J, et al.Energy sharing incentive strategy of prosumers considering conditional value at risk and integrated demand response[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2448-2463.
[17] 周亦洲, 孙国强, 黄文进, 等. 计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型[J]. 电网技术, 2017, 41(6): 1759-1767.
ZHOU Y Z, SUN G Q, HUANG W J, et al.Strategic bidding model for virtual power plant in different electricity markets considering electric vehicles and demand response[J]. Power system technology, 2017, 41(6): 1759-1767.
[18] YIN Y, HE C, LIU T Q, et al.Risk-averse stochastic midterm scheduling of thermal-hydro-wind system: a network-constrained clustered unit commitment approach[J]. IEEE transactions on sustainable energy, 2022, 13(3): 1293-1304.
[19] SU S, LI Z N, JIN X L, et al.Bi-level energy management and pricing for community energy retailer incorporating smart buildings based on chance-constrained programming[J]. International journal of electrical power & energy systems, 2022, 138: 107894.
[20] 李亚鹏, 赵麟, 王祥祯, 等. 不确定碳-电耦合市场下梯级水电双层竞价模型[J]. 电力系统自动化, 2023, 47(20): 83-94.
LI Y P, ZHAO L, WANG X Z, et al.Bi-level bidding model for cascaded hydropower under uncertain carbon-electricity coupled market[J]. Automation of electric power systems, 2023, 47(20): 83-94.
PDF(1745 KB)

Accesses

Citation

Detail

Sections
Recommended

/