Firstly, four experiments were conducted to assess the properties of acetic acid-resistant ethylene-vinyl acetate copolymer(EVA) film: acid concentration test, high temperature stripping test, volume resistivity test, and electroluminescence(EL) test of small double-glass modules encapsulated with a combination of acetic acid-resistant EVA and ethylene vinyl acetate/polyolefin elastomer(EPE). Secondly, the reliability of N-type TOPCon solar cells' double-glass photovoltaic modules——encapsulated with acetic acid-resistant EVA and EPE, conventional EPE and EPE, as well as combinations of acetic acid-resistant EVA and EVA——is meticulously examined. The results indicate that the acetic acid concentration in acetic acid-resistant EVA is lower than that in conventional EVA after the PCT test. Furthermore, there is no significant black discoloration observed due to corrosion on the small modules' EL after both the PCT144 h and DH1000 h tests. This suggests that acetic acid-resistant EVA exhibits minimal corrosion effects on TOPCon solar cells under these conditions. The volume resistivity of acetic acid-resistant EVA exceeds 1015 Ω·cm, thereby meeting the insulation requirements for photovoltaic (PV) modules. The acetic acid-resistant EVA exhibits a stable adhesion to glass at a temperature of 80 ℃, thereby mitigating the risk of delamination under high-temperature conditions. The power degradation of double-glass PV modules encapsulated by acetic acid-resistant EPE and EVA combination and double EPE combination is less than 4% after DH3000 h, PID288 h and TC600 test, which can meet the International Electrotechnical Commission(IEC) standard. Therefore, the combination of acetic acid-resistant EPE and EVA can be utilized to encapsulate double-glass modules, serving as a replacement for the conventional EPE and EVA combination. This approach effectively meets the demand for encapsulation film particles while contributing to cost reduction.
Key words
solar cells /
materials properties /
reliability /
acid resistance /
PID resistance /
heat and humidity resistance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 叶浩然, 何佳龙, 陈杨, 等. TOPCon太阳电池电子选择性接触研究[J]. 太阳能学报, 2024, 45(2): 475-479.
YE H R, HE J L, CHEN Y, et al.Research on electron selective contact of TOPCon solar cells[J]. Acta energiae solaris sinica, 2024, 45(2): 475-479.
[2] 朱冰洁, 宋昊, 陈昊旻, 等. 不同温度条件下晶体硅光伏组件光/电致衰减[J]. 太阳能学报, 2023, 44(6): 227-233.
ZHU B J, SONG H, CHEN H M, et al.Light/current-induced degradation of crystalline silicon photovoltaic modules under different temperatures[J]. Acta energiae solaris sinica, 2023, 44(6): 227-233.
[3] 赵邦桂, 李博, 杨振英, 等. 不同类型组件发电性能对比研究[J]. 中国新技术新产品, 2022(21): 50-52.
ZHAO B G, LI B, YANG Z Y, et al.Comparative study on power generation performance of different types of components[J]. New technology & new products of China, 2022(21): 50-52.
[4] 张文馨, 李宇岩, 仰云峰, 等. ENGAGETM PV POE胶膜对双面光伏组件长期可靠性的影响[J]. 太阳能, 2020(7): 36-41.
ZHANG W X, LI Y Y, YANG Y F, et al.Effect of ENGAGETM PV POE film on long-term reliability of bifacial PV module[J]. Solar energy, 2020(7): 36-41.
[5] 韩菲, 魏瑞平, 张亮, 等. 光伏组件EVA封装胶膜的抗PID改性研究进展[J]. 化工时刊, 2022, 36(5): 36-40.
HAN F, WEI R P, ZHANG L, et al.Research progress of anti-PID EVA encapsulant for photovoltaic modules[J]. Chemical industry times, 2022, 36(5): 36-40.
[6] 李达, 肖文, 郑海兴, 等. 封装胶膜的体积电阻率对光伏组件抗PID性能的影响研究[J]. 太阳能, 2022(11): 59-65.
LI D, XIAO W, ZHENG H X, et al.Study on the influence of volume resistivity of encapsulation films on the anti-PID performance of PV modules[J]. Solar energy, 2022(11): 59-65.
[7] 朱雅芝, 桑燕, 侯宏兵, 等. 光伏组件用封装胶膜抗腐蚀性能的测试评价方法: CN115406824A[P].2022-11-29.
ZHU Y Z, SANG Y, HOU H B, et al. Method for testing and evaluating corrosion resistance of packaging adhesive film for photovoltaic module: CN115406824A[P].2022-11-29.
[8] GB/T1410—2006, 固体绝缘材料体积电阻率和表面电阻率试验方法[S].
GB/T1410—2006, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials[S].
[9] ASTM D903-98(2017), 粘合剂剥离或剥离强度的标准试验方法[S].
ASTM D903-98(2017), Standard test method for peel or stripping strength of adhesive bonds[S].
[10] IEC 61215-1, Terrestrial photovoltaic (PV) modules: design qualification and type approval: Part 1: test requirements[S].
[11] DS/IEC TS 60904-13:2018, Photovoltaic devices: Part 13: electroluminescence of photovoltaic modules[S].
[12] IEC TS 62804-1, Photovoltaic (PV) modules: test methods for the detection of potential induced degradation[S].
[13] IEC TS 63209-2, Photovoltaic modules-Extended-stress testing: Part 1: modules[S].
[14] GB/T 29848—2018, 光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜[S].
GB/T 29848—2018, Ethylene-vinyl acetate copolymer(EVA)film for PV module[S].
[15] 朱威武, 李宾, 袁晓, 等. EVA封装胶膜的功能复合改性与耐老化性能[J]. 太阳能学报, 2019, 40(6): 1576-1582.
ZHU W W, LI B, YUAN X, et al.Modified and aging properties of functional composite EVA encapsulating film[J]. Acta energiae solaris sinica, 2019, 40(6): 1576-1582.
[16] 任涛, 韩一峰, 韩硕, 等. n型高效光伏组件发电性能研究[J]. 太阳能学报, 2022, 43(12): 13-18.
REN T, HAN Y F, HAN S, et al.Power generation performance study of high-efficiency n-type PV module[J]. Acta energiae solaris sinica, 2022, 43(12): 13-18.