STUDY OF MOTION CHARACTERISTICS OF TAUT MOORING FOUR-BUCKET FOUNDATION FOR WIND TURBINE

Liu Xianqing, Ding Yu, Zhang Puyang, Zhang Yu, Li Wenlong, Yang Bo

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 590-596.

PDF(2111 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2111 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 590-596. DOI: 10.19912/j.0254-0096.tynxb.2024-1122

STUDY OF MOTION CHARACTERISTICS OF TAUT MOORING FOUR-BUCKET FOUNDATION FOR WIND TURBINE

  • Liu Xianqing1, Ding Yu1, Zhang Puyang2, Zhang Yu3, Li Wenlong1, Yang Bo1
Author information +
History +

Abstract

The air flotation characteristics are a key aspect of bucket foundations. However, the mooring mechanism for this type of foundation during air-floating is not well understood. In this paper, model tests were conducted to analyze the taut mooring characteristics of a four-bucket foundation as a floating wind turbine foundation. The effects of draft depth, water depth, and anchorage distance on the motion response of the model were investigated. Our findings are as follows: the structure exhibits wave frequency motion in short periods and slow drift motion in large periods. As the draft increases, the heave motion shows an opposite trend to surge and pitch motion. The shallow water effect causes greater heave motion in shallow depths compared to deeper depths. Increasing the anchorage distance can mitigate the impact of slow drift on surge motion, but it increases the heave and pitch motion of the structure.

Key words

wind turbine / bucket foundation / taut mooring / motion characteristics / draft

Cite this article

Download Citations
Liu Xianqing, Ding Yu, Zhang Puyang, Zhang Yu, Li Wenlong, Yang Bo. STUDY OF MOTION CHARACTERISTICS OF TAUT MOORING FOUR-BUCKET FOUNDATION FOR WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 590-596 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1122

References

[1] ZHOU B W, ZHANG Z B, LI G D, et al.Review of key technologies for offshore floating wind power generation[J]. Energies, 2023, 16(2): 710.
[2] 周绪红, 王宇航, 邓然. 海上风电机组浮式基础结构综述[J]. 中国电力, 2020, 53(7): 100-105, 112.
ZHOU X H, WANG Y H, DENG R.Review on floating foundation structures for offshore wind turbines[J]. Electric power, 2020, 53(7): 100-105, 112.
[3] 冯紫薇. 张紧式系泊系统刚度特性及对Spar平台运动影响的研究[D]. 天津: 天津大学, 2014.
FENG Z W.Study on stiffness characteristics of taut mooring system and its influence on motions of Spar platform[D]. Tianjin: Tianjin University, 2014.
[4] 黄绍幸, 许新鑫, 校建东, 等. 海上风电单柱复合筒型基础拖航浮运特性分析[J]. 太阳能学报, 2024, 45(1): 251-257.
HUANG S X, XU X X, XIAO J D, et al.Analysis of towage and flotation characteristics of single-column composite tubular foundation for offshore wind power[J]. Acta energiae solaris sinica, 2024, 45(1): 251-257.
[5] 赵业彬, 张浦阳, 闫瑞洋, 等. 海上风电三筒导管架基础下沉过程屈曲分析[J]. 太阳能学报, 2023, 44(7): 504-510.
ZHAO Y B, ZHANG P Y, YAN R Y, et al.Analysis of buckling of bucket wall during foundation penetrating of three-bucket jacket foundation[J]. Acta energiae solaris sinica, 2023, 44(7): 504-510.
[6] 戚心源. 风、浪、流联合作用下无底半潜平台的性能(英)[J]. 船舶力学, 1998, 2(2): 8-12.
QI X Y.Behaviour of an open bottom floating platform in wave, wind and current[J]. Journal of ship mechanics, 1998, 2(2): 8-12.
[7] VEN KESS EL J L F. Aircushion supported mega-floaters[D]. Delft: Delft University of Technology, 2010.
[8] 赵荥. 筒型基础气浮拖航过程气-液-固耦合机理及浮运特性试验研究[D]. 天津: 天津大学, 2019.
ZHAO X.Model test on air-liquid-solid coupling mechanism and floating characteristics for bucket foundation during air-floating towing process[D]. Tianjin: Tianjin University, 2019.
[9] ZHANG P Y, LI Y E, LE C H, et al.Dynamic characteristics analysis of three-bucket jacket foundation lowering through the splash zone[J]. Renewable energy, 2022, 199: 1116-1132.
[10] 刘宪庆, 赵明阶, 乐丛欢, 等. 四筒型基础气浮过程自振特性及运动响应研究[J]. 太阳能学报, 2023, 44(1): 211-217.
LIU X Q, ZHAO M J, LE C H, et al.Study on natural vibration characteristics and motion response of four-bucket foundations during air-floating[J]. Acta energiae solaris sinica, 2023, 44(1): 211-217.
[11] KIM D S, IWATA K.Dynamic behavior of tautly moored semi-submerged structure with pressurized air-chamber and resulting wave transformation[J]. Coastal engineering in Japan, 1991, 34(2): 223-242.
[12] 张学栋. 一种气垫式风机支撑平台的绕射及垂荡动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
ZHANG X D.The analysis of diffraction and heave dynamic performance for a floating wind turbine platform supported by air cushion[D]. Harbin: Harbin Engineering University, 2018.
[13] 郝红彬, 郭志群, 徐力, 等. 桁架式气垫驳船浮式风机支撑平台的初稳性及耐波性研究[C]//第十九届中国海洋(岸)工程学术讨论会论文集(上). 重庆,中国, 2019: 260-266.
HAO H B, GUO Z Q, XU L, et al.Initial stability and wave resistance of floating wind turbine support platform on trussed air cushion barge[C]//Proceedings of the 19th China Ocean (Offshore) Engineering Symposium. Chongqing, China, 2019: 260-266.
[14] 丁红岩, 刘宪庆, 刁景华. 干舷高度影响筒型基础平台拖航试验研究[J]. 船舶力学, 2012, 16(5): 490-496.
DING H Y, LIU X Q, DIAO J H.Research on towing of ocean platform with bucket foundation-impact of freeboard[J]. Journal of ship mechanics, 2012, 16(5): 490-496.
[15] JTS/T 231—2021, 水运工程模拟试验技术规范[S].
JTS/T 231—2021, Technical code of modelling test for port and waterway engineering[S].
[16] 陈涛, 谢灿荣, 巫志文, 等. 浮箱系泊系统锚索静力特性分析[J]. 人民长江, 2018, 49(19): 67-75.
CHEN T, XIE C R, WU Z W, et al.Static characteristic analysis for anchor cables of pontoon mooring system[J]. Yangtze river, 2018, 49(19): 67-75.
[17] IBINABO I, TAMUNODUKOBIPI D T.Determination of the response amplitude operator(s) of an FPSO[J]. Engineering, 2019. 11(9): 541-556.
[18] HE F, HUANG Z H, LAW A W.An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction[J]. Applied energy, 2013, 106: 222-231.
[19] HE F, LENG J, ZHAO X Z.An experimental investigation into the wave power extraction of a floating box-type breakwater with dual pneumatic chambers[J]. Applied ocean research, 2017, 67: 21-30.
[20] 金瑞佳, 张崇伟, 柳叶, 等. 顺应式海洋平台慢漂运动物理模型试验研究[J]. 海洋工程, 2021, 39(4): 38-45.
JIN R J, ZHANG C W, LIU Y, et al.Physical model investigation on the slow drift motion of compliant mooring floating structure[J]. The ocean engineering, 2021, 39(4): 38-45.
[21] 严导淦. 流体力学中的总流伯努利方程[J]. 物理与工程, 2014, 24(4): 47-53.
YAN D G.The total flow bernoulli equation in fluid mechanics[J]. Physics and engineering, 2014, 24(4): 47-53.
PDF(2111 KB)

Accesses

Citation

Detail

Sections
Recommended

/