OPTIMIZED DESIGN AND NODE CARBON INTENSITY ANALYSIS OF SOLAR-AIR SOURCE HEAT PUMP HEATING SYSTEM FOR UNIVERSITY CAMPUSES UNDER DUAL CARBON GOALS

Luo Xi, Wang Yupan, Zhang Yuanqing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 451-460.

PDF(2023 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2023 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 451-460. DOI: 10.19912/j.0254-0096.tynxb.2024-1137

OPTIMIZED DESIGN AND NODE CARBON INTENSITY ANALYSIS OF SOLAR-AIR SOURCE HEAT PUMP HEATING SYSTEM FOR UNIVERSITY CAMPUSES UNDER DUAL CARBON GOALS

  • Luo Xi1,2, Wang Yupan1, Zhang Yuanqing1
Author information +
History +

Abstract

This study takes the solar-air source heat pump heating system as an example. Based on the joint optimization of system capacity configuration and operation strategy, we propose an exergy-carbon flow node carbon potential calculation method that considers energy quality differences. This method is applied to the solar-air source heat pump heating system at a university campus in Xi'an. The results showed that in terms of natural conditions, solar irradiance is not significantly correlated with nodal carbon intensity, but there is a significant negative correlation between outdoor temperature and nodal carbon intensity. In terms of system performance, there is a significant negative correlation between the solar collector efficiency, the performance of the air source heat pump, and node carbon intensity. Compared to the conventional node carbon potential calculation method that does not consider exergy, the exergy-carbon flow node carbon potential calculation method yields higher results. The difference between the two methods increases as the heat load decreases. In the supply network, from 01:00 to 08:00, the difference between the two node carbon intensity calculation methods is small, stabilizing around 2%. However, from 09:00 to 13:00, the difference significantly increases, reaching up to 13%. From 14:00 to 24:00, there is no significant difference between the results of the two methods. In the return network, the difference between the two node carbon intensity calculation methods is particularly pronounced during both the 01:00 to 08:00 and 09:00 to 13:00 periods, exceeding 10%. From 14:00 to 24:00, there is no significant difference between the results of the two methods.

Key words

university campus / heating systems / joint optimization / carbon emission flow / solar energy / energy quality difference

Cite this article

Download Citations
Luo Xi, Wang Yupan, Zhang Yuanqing. OPTIMIZED DESIGN AND NODE CARBON INTENSITY ANALYSIS OF SOLAR-AIR SOURCE HEAT PUMP HEATING SYSTEM FOR UNIVERSITY CAMPUSES UNDER DUAL CARBON GOALS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 451-460 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1137

References

[1] 谈雪, 郭强, 许健, 等. 夏热冬冷地区某高校典型建筑用能特征与用能行为影响分析[J]. 南京理工大学学报, 2019, 43(1): 101-107, 114.
TAN X, GUO Q, XU J, et al.Characteristics of energy use of typical buildings and its behavioral influencing analysis in one university campus in hot summer and cold winter, China[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 101-107, 114.
[2] 马江燕, 邓保顺, 侯卫华, 等. 太阳能耦合空气源-水源热泵复合供暖系统性能分析[J]. 暖通空调, 2023, 53(7): 22-27.
MA J Y, DENG B S, HOU W H, et al.Performance analysis of a solar energy coupled air-source and water-source heat pump composite heating system[J]. Heating ventilating & air conditioning, 2023, 53(7): 22-27.
[3] 李旭林, 王云龙, 张梓蕴. 太阳能-空气源热泵耦合供暖系统技术应用分析[J]. 节能, 2020, 39(11): 98-101.
LI X L, WANG Y L, ZHANG Z Y.Technical application analysis of solar energy coupling air source heat pump system[J]. Energy conservation, 2020, 39(11): 98-101.
[4] 何涛, 李博佳, 杨灵艳, 等. 可再生能源建筑应用技术发展与展望[J]. 建筑科学, 2018, 34(9): 135-142.
HE T, LI B J, YANG L Y, et al.Application and prospect of renewable energy technologies in buildings[J]. Building science, 2018, 34(9): 135-142.
[5] 谭心, 朱振经, 孙国鑫, 等. 基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化[J]. 太阳能学报, 2022, 43(10): 94-103.
TAN X, ZHU Z J, SUN G X, et al.Multi-objective optimization of air-soloar source heat pump combined heating system based on fuzzy analytic hierarch process[J]. Acta energiae solaris sinica, 2022, 43(10): 94-103.
[6] SHAN M, YU T, YANG X.Assessment of an integrated active solar and air-source heat pump water heating system operated within a passive house in a cold climate zone[J]. Renewable energy, 2016, 87: 1059-1066.
[7] 祝彩霞. 太阳能与空气源热泵联合供暖系统容量匹配及运行同步优化[D]. 西安: 西安建筑科技大学, 2019.
ZHU C X.Capacity matching and operation simultaneous optimization of solar energy and air source heat pump combined heating system[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
[8] 初壮, 赵国辉, 蔡文彬, 等. 计及静态安全因素的电-热多能流计算方法[J]. 电测与仪表, 2020, 57(15): 40-46.
CHU Z, ZHAO G H, CAI W B, et al.Electro-thermal multi-energy flow calculation method considering static safety factors[J]. Electrical measurement & instrumentation, 2020, 57(15): 40-46.
[9] JIANG H, YANG P H, LIU C M, et al.Probabilistic multi-energy flow calculation method for integrated heat and electricity systems considering correlation of source-load power[J]. Energy reports, 2023, 9: 1651-1667.
[10] 李虹, 林兰心. 基于碳排放流理论的供需联合优化调度策略[J]. 电力科学与工程, 2023, 39(11): 1-11.
LI H, LIN L X.Supply-demand joint optimal scheduling strategy based on carbon emission flow theory[J]. Electric power science and engineering, 2023, 39(11): 1-11.
[11] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36(11): 44-49.
ZHOU T R, KANG C Q, XU Q Y, et al.Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of electric power systems, 2012, 36(11): 44-49.
[12] 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流分析理论初探[J]. 电力系统自动化, 2012, 36(7): 38-43, 85.
ZHOU T R, KANG C Q, XU Q Y, et al.Preliminary theoretical investigation on power system carbon emission flow[J]. Automation of electric power systems, 2012, 36(7): 38-43, 85.
[13] 周天睿, 康重庆, 徐乾耀, 等. 碳排放流在电力网络中分布的特性与机理分析[J]. 电力系统自动化, 2012, 36(15): 39-44.
ZHOU T R, KANG C Q, XU Q Y, et al.Analysis on distribution characteristics and mechanisms of carbon emission flow in electric power network[J]. Automation of electric power systems, 2012, 36(15): 39-44.
[14] CHENG Y H, ZHANG N, WANG Y, et al.Modeling carbon emission flow in multiple energy systems[J]. IEEE transactions on smart grid, 2019, 10(4): 3562-3574.
[15] HUANG J H, DUAN W Y, ZHOU Q, et al.Methodology for carbon emission flow calculation of integrated energy systems[J]. Energy reports, 2022, 8: 1090-1097.
[16] 刘艳峰, 穆婷, 罗西, 等. 光照资源富集区太阳能集中供热系统容量配置及热网管径协同设计优化研究[J]. 太阳能学报, 2023, 44(1): 85-93.
LIU Y F, MU T, LUO X, et al.Equipment capacity and heating network pipe diameter optimization of centralized solar heating system in areas abundant with solar energy resources[J]. Acta energiae solaris sinica, 2023, 44(1): 85-93.
[17] 罗西, 潘梦钊, 刘艳峰. 高原宾馆建筑电-热-氧联供系统容量优化配置[J]. 太阳能学报, 2024, 45(8): 115-122.
LUO X, PAN M Z, LIU Y F.Capacity optimization of combined power-heating-oxygen system for plateau hotel building[J]. Acta energiae solaris sinica, 2024, 45(8): 115-122.
[18] 王荣环, 王吉进, 李俊, 等. 供暖室外计算温度下空气源热泵容量选型研究[J]. 暖通空调, 2023, 53(1): 125-130.
WANG R H, WANG J J, LI J, et al.Capacity selection of air-source heat pump based on outdoor design temperature for heating[J]. Heating ventilating & air conditioning, 2023, 53(1): 125-130.
[19] 穆婷. 太阳能集中供热系统设备容量及热网管径多目标协同优化研究[D]. 西安: 西安建筑科技大学, 2022.
MU T.Multi-objective optimization of equipment capacity and heating network design for centralized solar district heating system[D]. Xi’an: Xi’an University of Architecture and Technology, 2022.
[20] 陈景. 太阳能热水和热泵复合热源的辐射供暖系统的优化设计研究[D]. 南京: 东南大学, 2015.
CHEN J.Study on optimization design of mutiple solar hot water and heat pump radiant heating system[D]. Nanjing: Southeast University, 2015.
[21] GB 50495—2019, 太阳能供热采暖工程技术标准[S]B 50495—2019, 太阳能供热采暖工程技术标准[S]. 北京: 中国建筑工业出版社.
GB 50495—2019, Technical standard for solar heating system[S]B 50495—2019, Technical standard for solar heating system[S].
[22] GB/T 50189—2015, 公共建筑节能设计标准[S].
GB/T 50189—2015, Design standard for efficiency of public buildings[S].
[23] 严寒和寒冷地区居住建筑节能设计标准[M]严寒和寒冷地区居住建筑节能设计标准[M]. 北京: 中国建筑工业出版社, 2010.
Design standard for energy efficiency of residential buildings in severe cold and cold zones[M]Design standard for energy efficiency of residential buildings in severe cold and cold zones[M]. Beijing: China Architecture & Building Press, 2010.
[24] LIU Y F, ZHOU W H, LUO X, et al.Design and operation optimization of multi-source complementary heating system based on air source heat pump in Tibetan area of Western Sichuan, China[J]. Energy and buildings, 2021, 242: 110979.
[25] LIU Y F, TANG H L, CHEN Y W, et al.Optimization of layout and diameter for distributed solar heating network with multi-source and multi-sink[J]. Energy, 2022, 258: 124788.
PDF(2023 KB)

Accesses

Citation

Detail

Sections
Recommended

/