OPTIMIZATION CONTROL MODEL OF TRANSIENT ENERGY SUPPORT FOR ELECTROCHEMICAL ENERGY STORAGE IN NEW ENERGY STATION

Lu Guoqiang, Wang Kai, Ma Junxiong, Li Ziwei, Li Zifeng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 44-54.

PDF(1699 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1699 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 44-54. DOI: 10.19912/j.0254-0096.tynxb.2024-1138

OPTIMIZATION CONTROL MODEL OF TRANSIENT ENERGY SUPPORT FOR ELECTROCHEMICAL ENERGY STORAGE IN NEW ENERGY STATION

  • Lu Guoqiang1, Wang Kai1,2, Ma Junxiong1,2, Li Ziwei3, Li Zifeng3
Author information +
History +

Abstract

An energy control optimization method for electrochemical energy storage to improve the transient stability of the new energy grid is studied in this paper. Firstly, the characteristics of the electrochemical energy storage system during the transient and steady-state operation of a new energy grid with an electrochemical energy storage system are studied, and the transient and steady-state operation model of the electrochemical energy storage system is established. Then, the transient energy control of electrochemical energy storage system is divided into three-layer control process, and the transient energy control method of electrochemical energy storage system is proposed. The transient energy control optimization model of electrochemical energy storage system is established with the total control cost of the system as the optimization objective, and deep reinforcement learning algorithm is used to optimize the solution of the control model. Finally, the proposed control model is analyzed and verified by building a simulation example with the data of new energy station in a certain area of Qinghai. The results show that the energy control optimization method of electrochemical energy storage system proposed in this paper has a certain effect in improving the transient stability of the new energy.

Key words

new energy / energy storage / electrochemical / optimal control / transient stability / deep reinforcement learning algorithm

Cite this article

Download Citations
Lu Guoqiang, Wang Kai, Ma Junxiong, Li Ziwei, Li Zifeng. OPTIMIZATION CONTROL MODEL OF TRANSIENT ENERGY SUPPORT FOR ELECTROCHEMICAL ENERGY STORAGE IN NEW ENERGY STATION[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 44-54 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1138

References

[1] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9.
SHU Y B, ZHANG Z G, GUO J B, et al.Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9.
[2] 衣立东, 摆世彬, 张文朝, 等. 综合能源交直流混联外送系统暂态过电压分析与快速估算[J]. 太阳能学报, 2023, 44(6): 122-129.
YI L D, BAI S B, ZHANG W C, et al.Transient overvoltage analysis and rapid estimation of integrated energy AC-DC hybrid transmission system[J]. Acta energiae solaris sinica, 2023, 44(6): 122-129.
[3] 何勇, 姜峰, 刘雨瑞. 青海打造清洁能源发展新引擎[N]. 人民日报, 2023-06-11(1).
HE Y, JIANG F, LIU Y R. Qinghai creates a new engine for clean energy development[N]. People’s daily, 2023-06-11(1).
[4] 杨娜. 大力推进光伏储能产业融合发展[N]. 中国电力报, 2024-03-12(2).
YANG N. Vigorously promoting the integrated development of photovoltaic energy storage industry[N]. China electric power news, 2024-03-12(2).
[5] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[6] 李更丰, 孙少华, 别朝红, 等. 面向新型电力系统弹性提升的储能优化配置与灵活调度研究综述[J]. 高电压技术, 2023, 49(10): 4084-4095.
LI G F, SUN S H, BIE Z H, et al.Review on optimal configuration and flexible scheduling research of energy storage for resilience improvement of new power system[J]. High voltage engineering, 2023, 49(10): 4084-4095.
[7] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169.
XIE X R, MA N J, LIU W, et al.Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169.
[8] 李立, 王佳明, 张青蕾, 等. 兼顾系统频率稳定性和小干扰稳定性的构网型储能参数优化方法[J]. 电力建设, 2023, 44(12): 125-135.
LI L, WANG J M, ZHANG Q L, et al.Parameter optimization method of grid-forming energy storage considering system frequency stability and small signal stability[J]. Electric power construction, 2023, 44(12): 125-135.
[9] 杨永辉, 谢丽蓉, 包洪印, 等. 储能调频控制参数自适应优化与退出机制设计[J]. 太阳能学报, 2024, 45(4): 338-346.
YANG Y H, XIE L R, BAO H Y, et al.Adaptive optimization and exit mechanism design of frequency modulation control parameters for energy storage[J]. Acta energiae solaris sinica, 2024, 45(4): 338-346.
[10] 马覃峰, 安甦, 刘明顺, 等. 考虑风光储调频贡献度的新型电力系统频率特性[J]. 南方电网技术, 2024, 18(11): 129-140.
MA Q F, AN S, LIU M S, et al.Frequency characteristics of new power system considering the frequency modulation contribution of wind power-photovoltaic-energy storage[J]. Southern power system technology, 2024, 18(11): 129-140.
[11] 杨立滨. 基于电池储能的新能源送端电网暂态稳定优化研究[D]. 沈阳: 沈阳工业大学, 2022.
YANG L B.Research on transient stability optimization of new energy grid with battery energy storage[D]. Shenyang: Shenyang University of Technology, 2022.
[12] 徐佳琪. 紧急控制状态下储能提高电力系统暂态稳定性研究[D]. 福州: 福建工程学院, 2023.
XU J Q.Research on energy storage under emergency control to improve the transient stability of power systems[D]. Fuzhou: Fujian University of Technology, 2023.
[13] 杨路. 面向风电场频率稳定性提升的规模化储能控制方法研究[D]. 长沙: 湖南大学, 2022.
YANG L.Research on large-scale energy storage control method for improving frequency stability of wind farm[D]. Changsha: Hunan University, 2022.
[14] ZUO H, TENG Y, CHENG S Q, et al.Distributed multi-energy storage cooperative optimization control method for power grid voltage stability enhancement[J]. Electric power systems research, 2023, 216: 109012.
[15] ZUO H, TENG Y, CHEN Z.Voltage control method for multi-energy system based on the coupling of renewable energy hydrogen production and storage[J]. Science and technology for energy transition, 2024, 79: 60.
[16] 赵冬梅, 徐辰宇, 杜泽航, 等. 就地无常规电源支撑下考虑新能源基地频率稳定的储能优化配置方法[J]. 中国电机工程学报, 2024, 44(24): 9691-9706.
ZHAO D M, XU C Y, DU Z H, et al.Optimization configuration method for energy storage considering frequency stability of new energy bases without conventional power supply support on site[J]. Proceedings of the CSEE, 2024, 44(24): 9691-9706.
[17] 朱乃璇. 考虑不确定性与惯量支撑的输配电系统储能优化配置研究[D]. 杭州: 浙江大学, 2023.
ZHU N X.The optimal allocation of energy storage considering uncertainty and inertia support in T&D system[D]. Hangzhou: Zhejiang University, 2023.
[18] 吴琛, 刘晨曦, 黄伟, 等. 提升新能源电力系统稳定性的构网型变流器选址定容方法[J]. 电力系统自动化, 2023, 47(12): 130-136.
WU C, LIU C X, HUANG W, et al.Siting and sizing method of grid-forming converters for improving stability of power system with renewable energy[J]. Automation of electric power systems, 2023, 47(12): 130-136.
[19] 张世峥. 光伏高占比系统的稳定性分析和储能容量配置方法[D]. 北京: 华北电力大学, 2022.
ZHANG S Z.Stability analysis and energy storage capacity allocation method of photovoltaic high proportion system[D]. Beijing: North China Electric Power University, 2022.
[20] CIFUENTES N, RAHMANN C, VALENCIA F, et al.Network allocation of BESS with voltage support capability for improving the stability of power systems[J]. IET generation, transmission & distribution, 2019, 13(6): 939-949.
[21] YIN H, LAN H, YU D C, et al.An improved optimal allocation scheme of energy storage system in a distribution system based on transient stability[J]. Journal of energy storage, 2021, 34: 101977.
[22] 张鑫, 刘飞, 王世斌, 等. 提升特高压直流送端电网新能源消纳水平措施[J]. 电力系统及其自动化学报, 2022, 34(6): 135-141.
ZHANG X, LIU F, WANG S B, et al.Measures to improve the new energy consumption level of UHVDC sending-end power gird[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 135-141.
[23] 線国娇. 基于滑模观测器的机械臂故障检测与容错控制研究[D]. 兰州: 兰州交通大学, 2017.
XIAN G J.Research on fault detection and fault-tolerant control of robot manipulators based on sliding mode observer[D]. Lanzhou: Lanzhou Jiatong University, 2017.
[24] LIN P F, ZHANG C L, WANG J Y, et al.On autonomous large-signal stabilization for islanded multibus DC microgrids: a uniform nonsmooth control scheme[J]. IEEE transactions on industrial electronics, 2020, 67(6): 4600-4612.
[25] 董文康, 吴雨芯, 姚琦, 等. 基于深度强化学习的海上风电机组状态维护与备件库存联合优化[J]. 太阳能学报, 2023, 44(12): 190-199.
DONG W K, WU Y X, YAO Q, et al.Joint optimization of state maintenance and spare parts inventory of offshore wind turbines based on deep reinforcement learning[J]. Acta energiae solaris sinica, 2023, 44(12): 190-199.
[26] 张波, 高远, 李铁成, 等. 考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制[J]. 中国电机工程学报, 2024, 44(15): 5934-5947.
ZHANG B, GAO Y, LI T C, et al.Data-driven voltage/var optimization control of active distribution network considering the reliability of photovoltaic power supply[J]. Proceedings of the CSEE, 2024, 44(15): 5934-5947.
[27] MNIH V, KAVUKCUOGLU K, SILVER D, et al.Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[28] 杨浩, 宋国杰, 滕馥遥, 等. 单相并网逆变器自适应比例复数积分控制策略[J]. 高电压技术, 2020, 46(11): 3790-3799.
YANG H, SONG G J, TENG F Y, et al.Adaptive proportional complex integral control strategy for single-phase grid-connected inverter[J]. High voltage engineering, 2020, 46(11): 3790-3799.
PDF(1699 KB)

Accesses

Citation

Detail

Sections
Recommended

/