RIDGE-POSITION RATIO OPTIMIZATION OF SAWTOOTH TYPE MULTI-SPAN GREENHOUSE BASED ON LIGHT ENVIRONMENT

Qi Zihao, Wei Min, Wang Shaojie, Guan Renhui, Sun Hongyu, Song Haoran

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 395-404.

PDF(5202 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5202 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 395-404. DOI: 10.19912/j.0254-0096.tynxb.2024-1140

RIDGE-POSITION RATIO OPTIMIZATION OF SAWTOOTH TYPE MULTI-SPAN GREENHOUSE BASED ON LIGHT ENVIRONMENT

  • Qi Zihao1, Wei Min2, Wang Shaojie1,2, Guan Renhui1, Sun Hongyu2, Song Haoran1
Author information +
History +

Abstract

A single span 8 m of the sawtooth type multi-span greenhouse (STMG) in Changde city is taken as the research object based on the requirements of production and engineering construction. Ladybug Tools, a new type of building environment simulation plug-in, was used to investigate the influence of the variation of orientation and ridge position on the light environment in the greenhouse, and the optimal ridge position of the STMG with east-west and south-north was obtained. The results show that the lighting performance of the STMG is the best when the ridge-position ratio is 5.6∶2.4. The daytime illuminance of the STMG in the north-south greenhouse is higher than that in the east-west greenhouse. Under the optimal ridge-position ratio, the difference of illuminance is small, but the difference of solar irradiance is large. The solar irradiance inside the east-west greenhouse is 7.47 W/m2 higher than that inside the south-north greenhouse, which means that the east-west greenhouse has a stronger ability to acquire solar energy. This paper realizes the simulation of the light-environment of horticultural facilities based on Ladybug Tools, and obtains the optimal ridge-position ratio of the STMG.

Key words

solar energy / agricultural buildings / greenhouse / sawtooth-type multi-span greenhouse / light environment / shape optimization

Cite this article

Download Citations
Qi Zihao, Wei Min, Wang Shaojie, Guan Renhui, Sun Hongyu, Song Haoran. RIDGE-POSITION RATIO OPTIMIZATION OF SAWTOOTH TYPE MULTI-SPAN GREENHOUSE BASED ON LIGHT ENVIRONMENT[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 395-404 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1140

References

[1] 赵明智, 胡小明, 常春, 等. 一种垂直换热管对拱型温室大棚热环境的影响研究[J]. 太阳能学报, 2023, 44(7): 257-263.
ZHAO M Z, HU X M, CHANG C, et al.Study on effect of vertical heat exchange tube on thermal environment of hoop greenhouse[J]. Acta energiae solaris sinica, 2023, 44(7): 257-263.
[2] 魏雯婧, 罗久富, 杨路培, 等. 农业光伏互补开发与盈利模式研究[J]. 太阳能学报, 2023, 44(3): 457-464.
WEI W J, LUO J F, YANG L P, et al.Combining development and profit model of agrivoltaics: a preliminary study[J]. Acta energiae solaris sinica, 2023, 44(3): 457-464.
[3] 张玉晶. 基于设施农业的棚室改造研究[J]. 农机化研究, 2023, 45(7): 117-120.
ZHANG Y J.Study on transformation of greenhouse based on facility agriculture[J]. Journal of agricultural mechanization research, 2023, 45(7): 117-120.
[4] FENG C Q, YUAN G H, WANG R, et al.Performance study on a novel greenhouse cover structure with beam split and heat control function[J]. Energy conversion and management, 2024, 301: 118077.
[5] 陈海飞, 王韵杰, 蔡宝瑞, 等. 基于Ecotect的太阳能光伏外遮阳结构的数值模拟研究[J]. 可再生能源, 2021, 39(9): 1166-1174.
CHEN H F, WANG Y J, CAI B R, et al.Optimization of photovoltaic external shading structure based on Ecotect[J]. Renewable energy resources, 2021, 39(9): 1166-1174.
[6] 孙凯, 魏玉杰, 王旭, 等. 基于COMSOL的光伏温室温度场数值建模分析[J]. 能源研究与利用, 2023(1): 10-15, 22.
SUN K, WEI Y J, WANG X, et al.Numerical modeling analysis of photovoltaic greenhouse temperature field based on COMSOL[J]. Energy research & utilization, 2023(1): 10-15, 22.
[7] CARLINI M, CASTELLUCCI S, MENNUNI A, et al.Numerical modeling and simulation of pitched and curved-roof solar greenhouses provided with internal heating systems for different ambient conditions[J]. Energy reports, 2020, 6: 146-154.
[8] CHEN J T, MA Y W, PANG Z Z.A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in Southern China[J]. Solar energy, 2020, 205: 380-389.
[9] 程瑞, 余克强, 王双喜. 日光温室方位角对植物生长影响的实验研究[J]. 农机化研究, 2014, 36(11): 185-187.
CHENG R, YU K Q, WANG S X.Experimental study of sunlight greenhouse azimuth influenced on plants growth[J]. Journal of agricultural mechanization research, 2014, 36(11): 185-187.
[10] CHEN C, LI Y, LI N, et al.A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China[J]. Solar energy, 2018, 165: 19-26.
[11] 杨瑛, 高青, 刘柱梁, 等. 基于构件形态的高层大跨厂房光伏遮阳设计方法[J]. 太阳能学报, 2024, 45(2): 451-459.
YANG Y, GAO Q, LIU Z L, et al.Design method of photovoltaic shading for high-rise large-span factory based on component-based morphology[J]. Acta energiae solaris sinica, 2024, 45(2): 451-459.
[12] 周波, 孙维拓, 郭文忠, 等. 连栋玻璃温室天沟结构对栽培区光环境的影响分析[J]. 农业机械学报, 2021, 52(5): 286-292.
ZHOU B, SUN W T, GUO W Z, et al.Analysis and optimization of greenhouse gutter effect on radiation distribution inside multi-span greenhouses based on dynamic model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 286-292.
[13] 杨文雄, 马承伟. 不同覆盖材料对日光温室室内光环境的影响[J]. 农机化研究, 2016, 38(2): 145-148.
YANG W X, MA C W.The effect of different covering materials on the indoor light environment in greenhouse[J]. Journal of agricultural mechanization research, 2016, 38(2): 145-148.
[14] 成珂, 马晓瑶, 孙琦琦. 光伏温室大棚组件布置CFD模拟研究[J]. 太阳能学报, 2021, 42(8): 159-165.
CHENG K, MA X Y, SUN Q Q.CFD simulation study on module layout of photovoltaic greenhouse[J]. Acta energiae solaris sinica, 2021, 42(8): 159-165.
[15] 李芬, 刘楚琦, 于淏, 等. 基于天气分型的水平面总辐射及散射辐射建模分析[J]. 太阳能学报, 2024, 45(4): 560-568.
LI F, LIU C Q, YU H, et al.Modeling and analysis of horizontal plane global solar radiation and diffuse solar radiation based on weather type classification[J]. Acta energiae solaris sinica, 2024, 45(4): 560-568.
[16] DE SOUSA FREITAS J, CRONEMBERGER J, SOARES R M, et al. Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug[J]. Renewable energy, 2020, 160: 1468-1479.
[17] IBRAHIM Y, KERSHAW T, SHEPHERD P, et al.Multi-objective optimisation of urban courtyard blocks in hot arid zones[J]. Solar energy, 2022, 240: 104-120.
[18] KHARVARI F.An empirical validation of daylighting tools: assessing radiance parameters and simulation settings in Ladybug and Honeybee against field measurements[J]. Solar energy, 2020, 207: 1021-1036.
[19] 高静, 彭晋卿, 王韬宁, 等. 不同电池宽度半透明光伏窗天然采光分析[J]. 太阳能学报, 2022, 43(3): 223-230.
GAO J, PENG J Q, WANG T N, et al.Daylighting analysis of semi-transparent photovoltaic windows with different cell widths[J]. Acta energiae solaris sinica, 2022, 43(3): 223-230.
[20] MARDALJEVIC J.Daylight simulation: validation, sky models and daylight coefficients [D]. Leicester: De Montfort University, 1999.
[21] ZHANG K, YU J H, REN Y.Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses[J]. Renewable energy, 2022, 182: 536-551.
[22] 轩维艳. 日光温室采光屋面曲线数学模型的建立与分析[J]. 天津农业科学, 2006, 12(4): 44-46.
XUAN W Y.Mathematical model establishment and analysis for greenhouse surface curve[J]. Tianjin agricultural sciences, 2006, 12(4): 44-46.
[23] 张艺超. 日光温室前屋面结构与光调控设备对光环境优化研究[D]. 沈阳: 沈阳农业大学, 2023.
ZHANG Y C.Research on the optimization of light environment by the south roof structure and light control equipment of solar greenhouse[D]. Shenyang: Shenyang Agricultural University, 2023.
[24] 刘涛, 杨晓光, 高继卿, 等. 不同粮食作物光能利用效率研究[J]. 农业工程学报, 2020, 36(24): 186-193.
LIU T, YANG X G, GAO J Q, et al.Radiation use efficiency of different grain crops in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 186-193.
[25] 程勤阳, 丁小明, 曲梅. 连栋温室采光性能评价指标[J]. 农业工程学报, 2009, 25(7): 169-172.
CHENG Q Y, DING X M, QU M.Evaluation index of lighting performance in multi-span greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 169-172.
PDF(5202 KB)

Accesses

Citation

Detail

Sections
Recommended

/