RESEARCH ON FATIGUE LOAD SURROGATE MODEL FOR WIND TURBINES CONSIDERING WAKE EFFECTS

Wang Binbin, Peng Liuliu, Huang Guoqing, Yang Xiaolong, Liu Weijie, Xin Zhiqiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 623-628.

PDF(2166 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2166 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 623-628. DOI: 10.19912/j.0254-0096.tynxb.2024-1150

RESEARCH ON FATIGUE LOAD SURROGATE MODEL FOR WIND TURBINES CONSIDERING WAKE EFFECTS

  • Wang Binbin1, Peng Liuliu2, Huang Guoqing2, Yang Xiaolong2, Liu Weijie2, Xin Zhiqiang3
Author information +
History +

Abstract

A wind turbine fatigue load surrogate model that can account for wake effects is proposed in this paper. First, reasonable samples of input parameters for the model are selected based on engineering experience. Then, TurbSim is used to generate corresponding inflow wind field files, and the FAST. Farm software is used to carry out simulations of dual wind turbine loads to obtain a database of fatigue loads in wake and non-wake regions. Finally, support vector regression (SVR) and backpropagation neural networks (BPNN) are used to establish wind turbine fatigue load surrogate models for wake and non-wake regions, respectively. The results show that compared with traditional wind turbine fatigue load surrogate models, the proposed model, which includes wind turbine spacing as an input parameter, can consider wake effects between turbines, making the modeling approach more reasonable. Furthermore, considering both R² and NRMSE evaluation metrics, the modeling performance of SVM is superior to that of BPNN, with the models generally predicting loads on blades and the tower-top more accurately than at the tower base.

Key words

wind turbines / wake effects / fatigue load / surrogate model / FAST.farm / support vector regression / backpropagation neural networks

Cite this article

Download Citations
Wang Binbin, Peng Liuliu, Huang Guoqing, Yang Xiaolong, Liu Weijie, Xin Zhiqiang. RESEARCH ON FATIGUE LOAD SURROGATE MODEL FOR WIND TURBINES CONSIDERING WAKE EFFECTS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 623-628 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1150

References

[1] 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
National Energy Administration.Operation of renewable energy grid connection in2024 [EB/OL].https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html.
[2] KAMAL M, RAHMAN M M.Advances in fatigue life modeling: a review[J]. Renewable and sustainable energy reviews, 2018, 82: 940-949.
[3] Wind turbine generator systems-Part 1: safety requirement: IEC 61400-1 Ed. 2.0 en: 1999 systems-Part 1: safety requirement: IEC 61400-1 Ed. 2.0 en: 1999[S]. International Electrotechnical Commission, 1999.
[4] 刘伟杰, 黄国庆, 彭留留, 等. 考虑风力机疲劳载荷限制的风电场布局优化研究[J]. 太阳能学报, 2025, 46(6):548-555.
LIU W J, HUANG G Q, PENG L L, et al.Research on wind farm layout optimization considering fatigue loads constraint of wind turbines[J]. Acta energiae solaris sinica, 2025, 46(6): 548-555.
[5] DIMITROV N, KELLY M C, VIGNAROLI A, et al.From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases[J]. Wind energy science, 2018, 3(2): 767-790.
[6] SCHRÖDER L, KRASIMIROV DIMITROV N, VERELST D R, et al. Wind turbine site-specific load estimation using artificial neural networks calibrated by means of high-fidelity load simulations[J]. Journal of physics: conference series, 2018, 1037(6): 062027.
[7] GASPARIS G, LIO W H, MENG F Z.Surrogate models for wind turbine electrical power and fatigue loads in wind farm[J]. Energies, 2020, 13(23): 6360.
[8] HAGHI R, CRAWFORD C.Data-driven surrogate model for wind turbine damage equivalent load[J]. Wind energy science, 2024, 9(11): 2039-2062.
[9] 牟哲岳, 孙勇, 王瑞良, 等. 基于实测数据和机器学习的风电机组载荷预测模型[J]. 太阳能学报, 2023, 44(10): 414-419.
MOU Z Y, SUN Y, WANG R L, et al.Prediction model for wind turbine loads based on experimental data and machine learning[J]. Acta energiae solaris sinica, 2023, 44(10): 414-419.
[10] 王伟, 王海云. 基于Adam优化BP神经网络的风机等效疲劳载荷预测[J]. 现代电子技术, 2023, 46(17): 102-106.
WANG W, WANG H Y.Wind turbine equivalent fatigue load prediction based on Adam optimized BP neural network[J]. Modern electronics technique, 2023, 46(17): 102-106.
[11] 黄国庆, 刘伟杰, 王彬滨, 等. 基于深度神经网络的风力机疲劳载荷代理模型研究[J]. 太阳能学报, 2025, 46(4): 398-405.
HUANG G Q, LIU W J, WANG B B, et al.Research on surrogate models for fatigue loads prediction of wind turbines based on deep neural network[J]. Acta energiae solaris sinica, 2025, 46(4): 398-405.
[12] JONKMAN B J,BUHL M L.TurbSim user’s guide[R]. National Renewable Energy Laboratory, Technical Report Golden, Colorado, 2006.
[13] JONKMAN J M,SHALER K.FAST.farm user’s guide and theory manual[M]. Golden, CO, USA: National Renewable Energy Laboratory, 2021.
[14] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009(February): 1-75.
[15] HAYMAN G J, BUHL J M.Mlife users guide for version 1.00[J]. National renewable energy laboratory, 2012,74(75): 112.
[16] FRANDSEN S, BARTHELMIE R, PRYOR S, et al.Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind energy, 2006, 9(1/2): 39-53.
[17] AWAD M, KHANNA R.Support vector regression[M]//Efficient Learning Machines. Berkeley, CA: Apress, 2015: 67-80.
[18] HECHT R.Theory of the backpropagation neural network[M]. Neural networks for perception. Academic press, 1992, 1: 65-93.
PDF(2166 KB)

Accesses

Citation

Detail

Sections
Recommended

/