DISTRIBUTED PHOTOVOLTAIC SHORT-TERM POWER PREDICTION MODEL BASED ON MULTIVARIATE METEOROLOGICAL INFORMATION AND IMPROVED COMBINED NEURAL NETWORK

Wu Weili, Mi Chan, Li Lei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 181-192.

PDF(2396 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2396 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 181-192. DOI: 10.19912/j.0254-0096.tynxb.2024-1159

DISTRIBUTED PHOTOVOLTAIC SHORT-TERM POWER PREDICTION MODEL BASED ON MULTIVARIATE METEOROLOGICAL INFORMATION AND IMPROVED COMBINED NEURAL NETWORK

  • Wu Weili1,2, Mi Chan1,2, Li Lei1,2
Author information +
History +

Abstract

In order to improve the accuracy of PV power forecast, a short-term PV power forecast model is proposed, which takes into account the multivariate meteorological information from nearby power stations and improves the combined neural network. Firstly, considering the correlation between geographical factors and climatic conditions among adjacent distributed photovoltaic power stations, the grey correlation method is used to determine the main influencing factors of the power stations to be predicted, and the key features of multivariate meteorological information are constituted as the input sequence of the prediction model. Secondly, combining the advantages of the temporal convolutional network (TCN) for efficient extraction of input sequence information and bidirectional gated recurrent unit (BiGRU) for bidirectional data learning, a combined prediction model of TCN-BiGRU is built, and the improved Grey Wolf optimization algorithm (IGWO) is used to optimize the hyperparameters of BiGRU, so as to achieve high-precision prediction of photovoltaic power generation. Finally, the proposed model is verified by the measured data and compared with the similar methods. The results show that combined with multivariate meteorological information, the prediction model can effectively improve the prediction accuracy of power generation in different types of weather throughout the year, and compared with other prediction models, the proposed method can also show good prediction accuracy even when the climate conditions change drastically or randomly.

Key words

photovoltaic power prediction / neural network / variational mode decomposition / bidirectional gated recurrent unit / temporal convolutional network / improved grey wolf optimization algorithm

Cite this article

Download Citations
Wu Weili, Mi Chan, Li Lei. DISTRIBUTED PHOTOVOLTAIC SHORT-TERM POWER PREDICTION MODEL BASED ON MULTIVARIATE METEOROLOGICAL INFORMATION AND IMPROVED COMBINED NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 181-192 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1159

References

[1] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[2] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[3] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[4] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.
[5] 雷柯松, 吐松江·卡日, 伊力哈木·亚尔买买提, 等. 基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测[J]. 电力系统保护与控制, 2023, 51(9): 108-118.
LEI K S, TUSONGJIANG·K,YILIHAMU·Y, et al. Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention[J]. Power system protection and control, 2023, 51(9): 108-118.
[6] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[7] STUL M, STUL K, LEENDERS R, et al.Development of a SVM prediction model to optimize the energy consumption of industrial installations by detecting and classifying errors at an early S[J]. International journal of mechanical engineering and robotics research, 2017, 62(2): 108-113.
[8] 孙泽贤, 孙鹤旭. 计及误差反馈的短期风电功率预测[J]. 太阳能学报, 2020, 41(8): 281-287.
SUN Z X,SUN H X.Short-term wind power forecast considering error feedback[J]. Acta energiae solaris sinica, 2020, 41(8): 281-287.
[9] 谢小瑜, 周俊煌, 张勇军, 等. 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45(8): 175-184.
XIE X Y, ZHOU J H, ZHANG Y J, et al.W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J]. Automation of electric power systems, 2021, 45(8): 175-184.
[10] 周恒俊, 王璇, 王志远, 等. 基于MIPCA与GRU网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(9): 55-62.
ZHOU H J, WANG X, WANG Z Y, et al.Short-term photovoltaic output prediction method based on MIPCA and GRU network[J]. Proceedings of the CSU-EPSA, 2020, 32(9): 55-62.
[11] 李宏扬, 高丙朋. 基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2023, 44(8): 292-300.
LI H Y, GAO B P.Short-term PV power forecasting based on improved VMD and SNS-Attention-GRU[J]. Acta energiae solaris sinica, 2023, 44(8): 292-300.
[12] 张海涛, 李文娟, 李雪峰, 等. 基于变分模态分解和时间注意力机制TCN网络的光伏发电功率预测[J]. 电测与仪表, 2024, 61(12): 156-163.
ZHANG H T, LI W J, LI X F, et al.Photovoltaic power forecasting based on TPA-TCN model and variational modal decomposition[J]. Electrical measurement & instrumentation, 2024, 61(12): 156-163.
[13] 董雪, 赵宏伟, 赵生校, 等. 基于SOM聚类和二次分解的BiGRU超短期光伏功率预测[J]. 太阳能学报, 2022, 43(11): 85-93.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term forecasting method of photovoltaic power based on SOM clustering, secondary decomposition and BiGRU[J]. Acta energiae solaris sinica, 2022, 43(11): 85-93.
[14] 王瑞, 张璐婷, 逯静. 基于新型相似日选取和VMD-NGO-BiGRU的短期光伏功率预测[J]. 湖南大学学报(自然科学版), 2024, 51(2): 68-80.
WANG R, ZHANG L T, LU J.Short term photovoltaic power prediction based on new similar day selection and VMD-NGO-BiGRU[J]. Journal of Hunan University (natural sciences), 2024, 51(2): 68-80.
[15] 吉兴全, 赵国航, 叶平峰, 等. 基于QMD-HBi GRU的短期光伏功率预测方法[J]. 高电压技术, 2024, 50(9): 3850-3859.
JI X Q, ZHAO G H, YE P F, et al.Short-term PV forecasting method based on the QMD-HBi GRU model[J]. High voltage engineering, 2024, 50(9): 3850-3859.
[16] 王鹏, 高永宝, 寇少磊, 等. 基于灰色关联度-RSM模型对原子吸收光谱法测定金元素条件的多目标优化[J]. 光谱学与光谱分析, 2023, 43(10): 3117-3124.
WANG P, GAO Y B, KOU S L, et al.Multi-objective optimization of AAS conditions for determination of gold element based on gray correlation degree-RSM model[J]. Spectroscopy and spectral analysis, 2023, 43(10): 3117-3124.
[17] 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971.
TENG C Y, DING Y C, ZHANG Y B, et al.Ultra-short-term photovoltaic power prediction based on VMD-Informer-BiLSTM model[J]. High voltage engineering, 2023, 49(7): 2961-2971.
[18] YANG T T, SUN X W, YANG H R, et al.Integrated thermal error modeling and compensation of machine tool feed system using subtraction-average-based optimizer-based CNN-GRU neural network[J]. The international journal of advanced manufacturing technology, 2024, 131(12): 6075-6089.
[19] 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59(10): 108-116.
CHEN Y F, WEN M, ZHANG K, et al.Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical measurement & instrumentation, 2022, 59(10): 108-116.
[20] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
[21] 邹智, 吴铁洲, 张晓星, 等. 基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J]. 高电压技术, 2022, 48(10): 3935-3945.
ZOU Z, WU T Z, ZHANG X X, et al.Short-term load forecast based on Bayesian optimized CNN-BiGRU hybrid neural networks[J]. High voltage engineering, 2022, 48(10): 3935-3945.
[22] 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38.
ZHANG X F, WANG X Y.Comprehensive review of grey wolf optimization algorithm[J]. Computer science, 2019, 46(3): 30-38.
[23] 吕大青, 杨欢红, 杜浩良, 等. 基于小波KPCA与Bi-LSTM的特高压换流站测控装置健康评估和预测[J]. 电力系统保护与控制, 2022, 50(19): 80-87.
LYU D Q, YANG H H, DU H L, et al.Health status assessment and prediction of operational condition of a measurement and control device in a UHV converter station based on KPCA and Bi-LSTM[J]. Power system protection and control, 2022, 50(19): 80-87.
PDF(2396 KB)

Accesses

Citation

Detail

Sections
Recommended

/