REVIEW OF MODELING AND CONTROL TECHNOLOGY FOR SATELLITE SINGLE-AXIS SOLAR ARRAY DRIVE ASSEMBLY SYSTEM

Li Peng, Xu Ruidong, Zhang Jiateng, Gao Zhigang, Zhou Jun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 142-151.

PDF(2681 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2681 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 142-151. DOI: 10.19912/j.0254-0096.tynxb.2024-1172
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

REVIEW OF MODELING AND CONTROL TECHNOLOGY FOR SATELLITE SINGLE-AXIS SOLAR ARRAY DRIVE ASSEMBLY SYSTEM

  • Li Peng, Xu Ruidong, Zhang Jiateng, Gao Zhigang, Zhou Jun
Author information +
History +

Abstract

In view of the complex problems currently faced by the satellite single-axis solar array drive system, the technological progress at home and abroad is comprehensively reviewed from multiple perspectives such as system modeling, control methods and ground verification. Firstly, the structure, operation principle and working mode of SADA are analyzed. Then, according to the load characteristics of SADA, the dynamic modeling methods of rigid and flexible solar wings are summarized, and the single control and composite control strategies are discussed for the difficulties of speed and angle control caused by nonlinearity, and various algorithms are compared and analyzed. Also, the microgravity simulation and load characteristic simulation methods adopted to improve the accuracy of SADA ground test verification are introduced. Finally, the research trend of future spacecraft SADA is summarized and prospected.

Key words

solar array drive assembly system / rigid loads / flexible loads / nonlinear modeling / composite control / ground verification

Cite this article

Download Citations
Li Peng, Xu Ruidong, Zhang Jiateng, Gao Zhigang, Zhou Jun. REVIEW OF MODELING AND CONTROL TECHNOLOGY FOR SATELLITE SINGLE-AXIS SOLAR ARRAY DRIVE ASSEMBLY SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 142-151 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1172

References

[1] COLAGROSSI A, LAVAGNA M.A spacecraft attitude determination and control algorithm for solar arrays pointing leveraging sun angle and angular rates measurements[J]. Algorithms, 2022, 15(2): 29.
[2] 张岩, 魏强, 邢杰, 等. GEO轨道卫星单结砷化镓电池阵在轨衰减特性分析[J]. 太阳能学报, 2015, 36(3): 546-550.
ZHANG Y, WEI Q, XING J, et al.Analysis on attenuation characteristics of GaAs solar cells in geostionary orbit satllite[J]. Acta energiae solaris sinica, 2015, 36(3): 546-550.
[3] 王友平, 苗新. 航天器太阳电池阵驱动装置的新进展[J]. 导航与控制, 2018, 17(5): 8-17.
WANG Y P, MIAO X.New development for spacecraft solar array drive assembly[J]. Navigation and control, 2018, 17(5): 8-17.
[4] SANTONI F, PIERGENTILI F, CANDINI G P, et al.An orientable solar panel system for nanospacecraft[J]. Acta astronautica, 2014, 101: 120-128.
[5] 姜东升, 彭梅, 井元良, 等. 卫星太阳翼在轨输出功率预测模型[J]. 太阳能学报, 2022, 43(7): 80-85.
JIANG D S, PENG M, JING Y L, et al.Prediction model for satellite solar array on orbit output power[J]. Acta energiae solaris sinica, 2022, 43(7): 80-85.
[6] PASSARETTI M, HAYES R.Development of a solar array drive assembly for CubeSat[C]//40th Aerospace Mechanisms Symposium. Cocoa Beach, Florida, USA, 2010: 445-453.
[7] 何益康, 张文瀚, 王振华, 等. 用于卫星应急恢复的太阳电池阵转角估计方法[J]. 系统工程与电子技术, 2023, 45(3): 797-805.
HE Y K, ZHANG W H, WANG Z H, et al.Angle estimation method of solar array for satellite emergency recovery[J]. Systems engineering and electronic technology, 2023, 45(3): 797-805.
[8] CHERNYAKOV B, THAKORE K.Gimbals drive and control electronics design, development and testing of the LRO high gain antenna and solar array systems[C]// Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center. Cocoa Beach Maryland, USA, 2010.
[9] SCHEIDEGGER N, FERRIS M, PHILLIPS N.Bi-Axial solar array drive mechanism: design build and environmental testing[C]//Proceedings of the 42th Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center. Baltimore Maryland, America, 2014.
[10] RAINY R, LEWIS R, BOLIN R.The HySICS pointing system: a two-axis gimbal mounted to the ISS[C]//20th European Space Mechanism and Tribology Symposium. Warsaw, Poland, 2023.
[11] 吴鹏飞, 石然, 易志坤, 等. 基于改进型神经网络PID算法的太阳翼α驱动控制技术[J]. 空天防御, 2018, 1(4): 8-17.
WU P F, SHI R, YI Z K, et al.Research onαDrive control for solar array based on improved neural network PID[J]. Air & space defense, 2018, 1(4): 8-17.
[12] 斯祝华, 刘一武, 黎康. 太阳帆板驱动装置建模及其驱动控制研究[J]. 空间控制技术与应用, 2010, 36(2): 13-19.
SI Z H, LIU Y W, LI K.Research on modeling and driver design of solar array drive assembly[J]. Aerospace control and application, 2010, 36(2): 13-19.
[13] ZHOU T, GUO H, XU J Q, et al.Nonlinear modeling of solar array drive system considering backlash and friction[C]//2015 18th International Conference on Electrical Machines and Systems (ICEMS). Pattaya, Thailand, 2015: 1950-1955.
[14] 程俊波, 张强, 虎刚, 等. 一种高稳定度帆板驱动系统的摩擦参数辨识[J]. 空间控制技术与应用, 2016, 42(2): 14-19.
CHENG J B, ZHANG Q, HU G, et al.Friction parameter identification for high stability SADA[J]. Aerospace control and application, 2016, 42(2): 14-19.
[15] 李立东. 太阳帆板伺服系统转速控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI L D.Research on speed control method of solar panel servo system[D]. Harbin: Harbin Institute of Technology, 2020.
[16] 丁有爽, 肖曦. 伺服系统柔性负载建模方法研究[J]. 中国电机工程学报, 2016, 36(3): 818-827.
DING Y S, XIAO X.Mathematical modeling of flexible load in servo system[J]. Proceedings of the CSEE, 2016, 36(3): 818-827.
[17] 白圣建, 黄新生. 快速机动大型挠性航天器的动力学建模[J]. 航空学报, 2009, 30(10): 1985-1992.
BAI S J, HUANG X S.Dynamic modeling of large flexible spacecraft undergoing fast maneuvering[J]. Acta aeronautica et astronautica sinica, 2009, 30(10): 1985-1992.
[18] WANG M, LI X, WANG C.Modeling and rotating speed control of the Sun-tracking system with flexible solar arrays[C]//2020 39th Chinese Control Conference (CCC). Shenyang, China, 2020: 2691-2696.
[19] ZHOU T, GUO H, XU J Q, et al.Adaptive robust control with input shaping technology for solar array drive system[J]. Acta astronautica, 2017, 140: 264-272.
[20] XU J Q, FANG H, ZHOU T, et al.Optimal robust position control with input shaping for flexible solar array drive system: a fuzzy-set theoretic approach[J]. IEEE transactions on fuzzy systems, 2019, 27(9): 1807-1817.
[21] ZHU S Y, LEI Y J, WU X F, et al.Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems[J]. Journal of sound and vibration, 2015, 343: 194-215.
[22] 于登云, 王光远, 郑照明月. 永磁同步电机驱动太阳翼扰动力矩建模与仿真[J]. 宇航学报, 2019, 40(7): 742-747.
YU D Y, WANG G Y, ZHENG Z M Y. Modelling and simulation of disturbance torque generated by solar array driven by permanent magnet synchronous motor[J]. Journal of astronautics, 2019, 40(7): 742-747.
[23] 程俊波, 张强, 虎刚, 等. 一种高稳定度帆板驱动系统的T-S模糊复合控制器[J]. 宇航学报, 2016, 37(3): 307-315.
CHENG J B, ZHANG Q, HU G, et al.T-S fuzzy composite controller for high stability SADA[J]. Journal of astronautics, 2016, 37(3): 307-315.
[24] CAO Y T, CAO D Q, WEI J, et al.Modeling for solar array drive assembly system and compensating for the rotating speed fluctuation[J]. Aerospace science and technology, 2019, 84: 131-142.
[25] LIANG J, JIA H G, CHEN M S, et al.Modeling and disturbance compensation sliding mode control for solar array drive assembly system[J]. Aerospace, 2023, 10(6): 501.
[26] ZHOU Y, PANG J, LIU F Q, et al.Design of steady speed control system for space borne scanning loads[C]//10th International Conference on Signal and Information Processing, Networking and Computers. Beijing, China, 2023.
[27] 左月飞, 张捷, 刘闯, 等. 基于自抗扰控制的永磁同步电机位置伺服系统一体化设计[J]. 电工技术学报, 2016, 31(11): 51-58.
ZUO Y F, ZHANG J, LIU C, et al.Integrated design for permanent magnet synchronous motor servo systems based on active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 51-58.
[28] GUO C Y, LU D N, ZHANG M, et al.Active control technology for flexible solar array disturbance suppression[J]. Aerospace science and technology, 2020, 106: 106148.
[29] LIU L, CAO D Q.Dynamic modeling for a flexible spacecraft with solar arrays composed of honeycomb panels and its proportional-derivative control with input shaper[J]. Journal of dynamic systems, measurement, and control, 2016, 138(8): 081008.
[30] STANKOVIĆ M R, MADONSKI R, SHAO S, et al.On dealing with harmonic uncertainties in the class of active disturbance rejection controllers[J]. International journal of control, 2021, 94(10): 2795-2810.
[31] LIU D M, TAN L G, GUO S, et al.Research on servo control algorithm of photoelectric stabilized platform based on sliding mode active disturbance rejection[J]. Journal of physics: conference series, 2022, 2395(1): 012077.
[32] DENG J J, CHEN Y, WANG W.PMSM vector control system based on improved active disturbance rejection speed controller[C]//2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC). Mianyang, China, 2023: 144-149.
[33] ZHANG Z Z, QIU Q X, WU Y H.Research on active disturbance rejection controller for electromechanical servo system with large Inertia loads[C]//2nd International Conference on Mechatronics Technology and Aerospace Engineering. Nanchang, China, 2022.
[34] WANG Y C, FANG S H, HU J X, et al.Multiscenarios parameter optimization method for active disturbance rejection control of PMSM based on deep reinforcement learning[J]. IEEE transactions on industrial electronics, 2023, 70(11): 10957-10968.
[35] KHORASHADIZADEH S, SADEGHIJALEH M.Adaptive fuzzy tracking control of robot manipulators actuated by permanent magnet synchronous motors[J]. Computers & electrical engineering, 2018, 72: 100-111.
[36] LIU T Y, LIU Z M, ZHU F L.A nonlinear robust speed controller for dual nonidentical parallel PMSM system[J]. IEEE transactions on power electronics, 2022, 37(9): 10190-10199.
[37] JON R, WANG Z S, LUO C M, et al.Adaptive robust speed control based on recurrent Elman neural network for sensorless PMSM servo drives[J]. Neurocomputing, 2017, 227: 131-141.
[38] QU C Y, HU Y Z, GUO Z Q, et al.New sliding mode control based on tracking differentiator and RBF neural network[J]. Electronics, 2022, 11(19): 3135.
[39] 田大可, 范小东, 郑夕健, 等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3): 11-25.
TIAN D K, FAN X D, ZHENG X J, et al.Research status and prospect of microgravity environment simulation of space deployable antenna[J]. Journal of mechanical engineering, 2021, 57(3): 11-25.
[40] ZHAO Z, CHEN G P, WANG B.Test method for SADA’s servo control system of China space station[C]//2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Brussels, Belgium, 2019: 297-301.
[41] 杨国永, 王洪光, 姜勇, 等. 气浮试验台重力卸载精度分析[J]. 机械工程学报, 2019, 55(5): 1-10.
YANG G Y, WANG H G, JIANG Y, et al.Gravity unloading precision analysis of air bearing facility[J]. Journal of mechanical engineering, 2019, 55(5): 1-10.
[42] 吴跃民, 罗强, 王晛, 等. 气浮悬吊式太阳翼重力补偿装置的设计与验证[J]. 机械工程学报, 2020, 56(13): 149-155.
WU Y M, LUO Q, WANG X, et al.Design and verification of air-floating suspension gravity compensation device for solar wing[J]. Journal of mechanical engineering, 2020, 56(13): 149-155.
[43] 张加波, 王辉, 李云, 等. 基于真空负压吸附的太阳翼重力卸载技术[J]. 机械工程学报, 2020, 56(5): 202-210.
ZHANG J B, WANG H, LI Y, et al.Gravity compensation technology of solar array based on vacuum negative pressure adsorption[J]. Journal of mechanical engineering, 2020, 56(5): 202-210.
[44] SALTZMAN M D, SCHEPIS J P, BRUCKNER M.Problems encountered during the recertification of the GLORY solar array dual axis gimbal drive actuators[C]//13th European Space Mechanisms and Tribology Symposium. Vienna, Austria, 2009.
[45] 王学强. 太阳翼驱动机构扰动特性测试系统研究[D]. 上海: 上海交通大学, 2020.
WANG X Q.Research on disturbance characteristics test system of solar wing drive mechanism[D]. Shanghai: Shanghai Jiaotong University, 2020.
[46] 朱仕尧, 雷勇军, 郭欣. 航天器太阳能电池阵驱动系统激扰因素辨识与扰动机理分析[J]. 宇航学报, 2020, 41(12): 1507-1515.
ZHU S Y, LEI Y J, GUO X.Disturbance mechanism and disturbing factors of solar array drive system of spacecraft[J]. Journal of astronautics, 2020, 41(12): 1507-1515.
[47] 刘磊. 微纳卫星太阳能电池阵驱动系统设计与研究[D]. 南京: 南京理工大学, 2020.
LIU L.Design and research of micro-nano satellite solar array drive system[D]. Nanjing: Nanjing University of Science and Technology, 2020.
[48] GALATIS G, GUO J, BUURSINK J.Development of a solar array drive mechanism for micro-satellite platforms[J]. Acta astronautica, 2017, 139: 407-418.
[49] BAMFORD S G.E3000 high power SADM development[C]//12th European Space Mechanisms and Tribology Symposium. Liverpool, UK, 2007.
[50] 于济菘. 对日定向太阳翼扰振特性及其抑制技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022.
YU J S.Research on the disturbance characteristics and suppression technology of solar array[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and physics Chinese Academy of Sciences, 2022.
[51] 贺云, 尹猛, 徐志刚, 等. 对日定向半物理试验台的加载有效性验证[J]. 宇航学报, 2017, 38(2): 198-204.
HE Y, YIN M, XU Z G, et al.Validation of the loading effectiveness of the directional semi-physical test bench[J]. Acta astronautics, 2017, 38(2): 198-204.
[52] 贺云, 张飞龙, 刘明洋, 等. 空间站对日定向装置试验台的控制器设计与精度考核[J]. 宇航学报, 2018, 39(6): 674-682.
HE Y, ZHANG F L, LIU M Y, et al.Controller design and accuracy assessment of the space station’s orientation device test bench[J]. Journal of astronautics, 2018, 39(6): 674-682.
PDF(2681 KB)

Accesses

Citation

Detail

Sections
Recommended

/