STUDY ON PROPAGATION CHARACTERISTICS OF TYPHOON WAVES IN MULTI-ISLAND SEA

Dong Weiliang, Huang Shichang, Huang Junbao, Shao Jie, Yao Wenwei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 1-10.

PDF(2620 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2620 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 1-10. DOI: 10.19912/j.0254-0096.tynxb.2024-1178

STUDY ON PROPAGATION CHARACTERISTICS OF TYPHOON WAVES IN MULTI-ISLAND SEA

  • Dong Weiliang1, Huang Shichang1, Huang Junbao1, Shao Jie1,2, Yao Wenwei1
Author information +
History +

Abstract

To enhance the prediction accuracy of waves in multi-island sea regions, this study uses the measured wave data of 57 typhoons in the Yangtze River Estuary and the coastal waters of Zhejiang Province from 1987 to 2022 to investigate the attenuation coefficients of wave height in various sea areas through data processing and analysis. The leef-sheltering coefficients is employed to quantify the influence of reef location, size and other factors on the average periods of mixed waves. Based on the measured wave height-period relationship of mixed waves, a method for determining the maximum and minimum periods of mixed waves is proposed. Finally, the friction coefficient of the wave bottom in the study area is calculated by using theoretical formulas. As shown in the results, the wave height gradually diminishes during the wave propagation towards the inshore, and the wave energy attenuates more rapidly in the areas with numerous islands than in open areas without islands. In a multi-island sea area, the period of mixed waves will gradually decrease under the effect of reef shielding, while the degree of period reduction increases with the increase of the reef shielding degree. For a certain wave height, the wave-period relationship of the strong wave direction at offshore stations can be regarded as the maximum possible period of the mixed wave, while the wave-period relationship of the wind waves can be taken as the minimum possible period of the mixed wave. As demonstrated in the calculation, in the Yangtze River Estuary and the near-shore regions of Zhejiang Province, the wave bottom friction coefficient Cb is 0.050 m2/s3, and the bottom friction coefficient f is 0.009.

Key words

wave energy / buoys / friction / wave period / island sheltering / typhoon wave / attenuation

Cite this article

Download Citations
Dong Weiliang, Huang Shichang, Huang Junbao, Shao Jie, Yao Wenwei. STUDY ON PROPAGATION CHARACTERISTICS OF TYPHOON WAVES IN MULTI-ISLAND SEA[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 1-10 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1178

References

[1] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6): 1711-1716.
JIANG B, DING J, WU H, et al.Wave energy resource assessment along Bohai Sea, Yellow Sea and East China Sea[J]. Acta energiae solaris sinica, 2017, 38(6): 1711-1716.
[2] 李妍妮, 史宏达, 曹飞飞. 广东省周边海域风能和波浪能联合开发潜力分析[J]. 太阳能学报, 2024, 45(8): 651-659.
LI Y N, SHI H D, CAO F F.Analysis of joint development potential of wind and wave energy in sea area around Guangdong province[J]. Acta energiae solaris sinica, 2024, 45(8): 651-659.
[3] 夏云峰, 成泽霖, 徐福敏, 等. 波浪作用下的床面切应力研究进展[J]. 水科学进展, 2021, 32(6): 944-956.
XIA Y F, CHENG Z L, XU F M, et al.Advance in bed shear stress under waves[J]. Advances in water science, 2021, 32(6): 944-956.
[4] 王红川, 杨氾, 潘军宁. 考虑极端天气时港珠澳大桥人工岛设计波浪要素: Ⅱ.设计波要素校核方法[J]. 水科学进展, 2019, 30(6): 902-907.
WANG H C, YANG F, PAN J N.Study on the design wave on the artificial island of Hong Kong-Zhuhai-Macao Bridge while considering the extreme weather: Ⅱ. checking method of design wave elements[J]. Advances in water science, 2019, 30(6): 902-907.
[5] 孙璐, 黄楚光, 蔡伟叙, 等. 广海湾海浪要素的基本特征及典型台风过程的波浪分析[J]. 热带海洋学报, 2014, 33(3): 17-23.
SUN L, HUANG C G, CAI W X, et al.Statistical analysis of wave characteristics in the Guanghai Bay[J]. Journal of tropical oceanography, 2014, 33(3): 17-23.
[6] 李佳谦, 邵珠晓, 梁丙臣. 渤海和黄海北部波高与周期联合分析[J]. 海洋与湖沼, 2022, 53(4): 990-998.
LI J Q, SHAO Z X, LIANG B C.Joint analysis of wave height and wave period in the Bohai Sea and northern Yellow Sea[J]. Oceanologia et limnologia sinica, 2022, 53(4): 990-998.
[7] 高晨晨, 周谷城, 王侃睿. 响水近岸海域波浪特性研究[J]. 海洋学报, 2019, 41(5): 23-34.
GAO C C, ZHOU G C, WANG K R.Study on wave characteristics in the nearshore waters of Xiangshui[J]. Haiyang xuebao, 2019, 41(5): 23-34.
[8] 杨斌, 施伟勇, 叶钦, 等. 舟山岛东北部沿海实测台风浪特性[J]. 水科学进展, 2017, 28(1): 106-115.
YANG B, SHI W Y, YE Q, et al.Characteristics of waves in coastal waters of northeast Zhoushan Island during typhoons[J]. Advances in water science, 2017, 28(1): 106-115.
[9] 周阳, 叶钦, 杨斌, 等. 基于AWAC的三门湾海域波浪分布特征分析[J]. 太阳能学报, 2021, 42(10): 387-393.
ZHOU Y, YE Q, YANG B, et al.Analysis of wave distribution characteristics in Sanmen bay based on AWAC[J]. Acta energiae solaris sinica, 2021, 42(10): 387-393.
[10] 吴迪茜, 陈智杰. 平潭岛东部海域波浪特征及波浪能分析[J]. 应用海洋学学报, 2021, 40(2): 293-302.
WU D X, CHEN Z J.Wave characteristics and wave energy analysis on the east of Pingtan Island[J]. Journal of applied oceanography, 2021, 40(2): 293-302.
[11] 解静, 常江, 孙家文, 等. 阳江近海海域波浪特征分析[J]. 海洋环境科学, 2022, 41(2): 167-173.
XIE J, CHANG J, SUN J W, et al.Analysis on wave characteristics of Yangjiang offshore area[J]. Marine environmental science, 2022, 41(2): 167-173.
[12] 李永青, 李彬, 石洪源, 等. 南海北部波浪特征分析[J]. 海洋湖沼通报, 2019, 41(2): 18-23.
LI Y Q, LI B, SHI H Y, et al.Analysis of wave characteristics in the northeastern part of the South China Sea[J]. Transactions of oceanology and limnology, 2019, 41(2): 18-23.
[13] 周阳, 陈佳超, 张俊彪, 等. 浙江近岸海域实测大浪特征分析[J]. 太阳能学报, 2023, 44(5): 23-29.
ZHOU Y, CHEN J C, ZHANG J B, et al.Analysis on characteristics of measured large waves in seas adjacent to Zhejiang[J]. Acta energiae solaris sinica, 2023, 44(5): 23-29.
[14] SAMIKSHA S V, JANCY L, SUDHEESH K, et al.Evaluation of wave growth and bottom friction parameterization schemes in the SWAN based on wave modelling for the central west coast of India[J]. Ocean engineering, 2021, 235: 109356.
[15] 林逸凡, 刘玉飞, 王小合, 等. 基于SWAN模式的中国近海波浪模拟修正研究[J]. 海洋湖沼通报(中英文), 2024, 46(4): 1-10.
LIN Y F, LIU Y F, WANG X H, et al.Study on the calibration of wave field simulation in the China adjacent sea based on SWAN model[J]. Transactions of oceanology and limnology, 2024, 46(4): 1-10.
[16] 梁娟. 浙江近岸海域近现代沉积作用与全新世沉积环境演化[D]. 武汉: 中国地质大学, 2019.
LIANG J.The modern sedimentation and evolution of sedimentary environment in the Zhejiang nearshore area during the Holocene[D]. Wuhan: China University of Geosciences, 2019.
[17] 陈雅望. 近40年来长江口表层沉积物变化及其机制探究[D]. 上海: 华东师范大学, 2022.
CHEN Y W.Analysis of sediment grain size changes in the Yangtze River estuary during the past 40 years [D]. Shanghai: East China Normal University, 2022.
[18] 胡春宏, 王延贵, 陈森美, 等. 浙江沿海海域泥沙变化及其对滩涂变化的影响[J]. 浙江水利科技, 2012, 40(6): 1-4.
HU C H, WANG Y G, CHEN S M, et al.The variation of coastal-sediment on the coast line in Zhejiang Province and its impact on the variation of shoals[J]. Zhejiang hydrotechnics, 2012, 40(6): 1-4.
[19] 陆罕芳, 顾峰峰, 陈学恩, 等. 舟山群岛海域波浪对泥沙冲淤过程的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(8): 1-9.
LU H F, GU F F, CHEN X E, et al.Effect of sea waves on sediment transport in the sea waters surrounding Zhoushan Islands, China[J]. Periodical of Ocean University of China, 2019, 49(8): 1-9.
[20] 杨俊, 鲍先勇, 岳书波, 等. 台州市头门港区进港航道试挖槽回淤过程研究[J]. 浙江水利科技, 2023, 51(4): 81-84.
YANG J, BAO X Y, YUE S B, et al.Study on siltation monitoring of trial excavated channel in toumen port channel of Taizhou[J]. Zhejiang hydrotechnics, 2023, 51(4): 81-84.
[21] 许婷, 麦苗, 韩志远. 瓯江河口水动力泥沙环境分析[J]. 水利科技与经济, 2018, 24(10): 1-5.
XU T, MAI M, HAN Z Y.Analysis of hydrodynamic and sediment environment in the Oujiang River Estuary[J]. Water conservancy science and technology and economy, 2018, 24(10): 1-5.
[22] 左利钦, 陆永军, 季荣耀. 浙江南部淤泥质海岸河口拦门沙航道泥沙回淤规律: 以鳌江河口为例[J]. 应用基础与工程科学学报, 2014, 22(1): 88-105.
ZUO L Q, LU Y J, JI R Y.Back silting law of the mouth bar channel in southern Zhejiang muddy coastal estuaries: case study of aojiang estuary[J]. Journal of basic science and engineering, 2014, 22(1): 88-105.
[23] 王毅, 涂小萍, 蒋璐璐, 等. 台风“利奇马” 影响期间浙江沿海海浪特征分析[J]. 气象科学, 2020, 40(1): 97-105.
WANG Y, TU X P, JIANG L L, et al.Analysis of wave characteristics along Zhejiang coast during typhoon “Lekima”[J]. Journal of the meteorological sciences, 2020, 40(1): 97-105.
[24] 张蔺廉, 陈淑琴, 陈梅汀. 基于舟山多年风浪资料的近海海浪预报研究[J]. 海岸工程, 2018, 37(3): 25-33.
ZHANG L L, CHEN S Q, CHEN M T.Research on offshore wave prediction based on wind and wave data obtained in Zhoushan in the past years[J]. Coastal engineering, 2018, 37(3): 25-33.
[25] 邱大洪. 工程水文学[M]. 4版. 北京: 人民交通出版社, 2011.
QIU D H.Engineering hydrology[M]. 4th ed. Beijing: China Communications Press, 2011.
[26] 黄世昌, 赵鑫, 娄海峰, 等. 浙江沿海超强台风作用下的台风浪波高[J]. 海洋通报, 2012, 31(4): 369-375, 383.
HUANG S C, ZHAO X, LOU H F, et al.Typhoon-generated wave height due to the super typhoon in the coastal region of Zhejiang Province[J]. Marine science bulletin, 2012, 31(4): 369-375, 383.
[27] 沙伟, 石少华, 沈全福. 威马逊台风对长江口海域波浪及海洋工程的影响[J]. 海洋预报, 2003, 20(2): 24-29.
SHA W, SHI S H, SHEN Q F.Influence of typhoon weimason on waves and ocean engineering in the Changjiang Estuary[J]. Marine forecasts, 2003, 20(2): 24-29.
[28] Army Coastal Engineering Research Center US. Shore protection manual[M]. 3d ed. Fort Belvoir, Va.: The Center, 1977.
[29] GODA Y.Revisiting Wilson’s formulas for simplified wind-wave prediction[J]. Journal of waterway, port, coastal, and ocean engineering, 2003, 129(2): 93-95.
[30] 徐啸, 陶爱峰, 李雪丁, 等. 基于实测数据的台湾海峡中部波浪特征分析[J]. 热带海洋学报, 2021, 40(1): 12-20.
XU X, TAO A F, LI X D, et al.Analysis of wave characteristics in the central Taiwan strait based on measured data[J]. Journal of tropical oceanography, 2021, 40(1): 12-20.
PDF(2620 KB)

Accesses

Citation

Detail

Sections
Recommended

/