OPTIMIZATION OF MASTER-SLAVE GAME OPERATION OF MULTI-AGENT INTEGRATED ENERGY SYSTEM CONSIDERING SHARED ENERGY STORAGE UNDER ELECTRIC CARBON MARKET

Hu Shuibin, Li Dahua, Kong Xiangyu, Zhang Delong, Huo Xianxu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 481-491.

PDF(2091 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2091 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 481-491. DOI: 10.19912/j.0254-0096.tynxb.2024-1185

OPTIMIZATION OF MASTER-SLAVE GAME OPERATION OF MULTI-AGENT INTEGRATED ENERGY SYSTEM CONSIDERING SHARED ENERGY STORAGE UNDER ELECTRIC CARBON MARKET

  • Hu Shuibin1, Li Dahua1, Kong Xiangyu1,2, Zhang Delong1, Huo Xianxu3
Author information +
History +

Abstract

Under the electric carbon trading mechanism, the configuration of shared energy storage stations in integrated energy systems can effectively improve overall energy utilization efficiency. How to coordinate the energy demands and benefit distribution among various agents within the system constitutes a key challenge in achieving low-carbon and economic development of integrated energy system.In this regard, the paper proposes a master-slave game optimization operation method of multi-body integrated energy system considering shared energy storage under the electric carbon market. Firstly, a multi-subject energy interaction architecture under the electric carbon market is constructed; secondly, a multi-subject integrated energy system optimization operation model is established by combining the benefits of each subject; then, a master-slave game mechanism with one master and many slaves is established with the system operator as the leader and the load aggregators, parks, and shared energy storage power stations as the followers, and the equilibrium solution of the game is calculated by the improved adaptive variant particle swarm algorithm. Finally, the proposed method is verified by the case study, showing that it can effectively coordinate the conflicting interests of multiple subjects, enhance the economic benefits of the integrated energy system and reduce carbon emissions.

Key words

game theory / demand response / carbon trading / integrated energy system / shared energy storage / optimization operation

Cite this article

Download Citations
Hu Shuibin, Li Dahua, Kong Xiangyu, Zhang Delong, Huo Xianxu. OPTIMIZATION OF MASTER-SLAVE GAME OPERATION OF MULTI-AGENT INTEGRATED ENERGY SYSTEM CONSIDERING SHARED ENERGY STORAGE UNDER ELECTRIC CARBON MARKET[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 481-491 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1185

References

[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(增刊1): 28-51.
HUANG Y H, DING T, LI Y T, et al.Summary of energy low-carbon technology under the background of carbon neutrality and its enlightenment to the development of new power system[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51.
[2] HE J, LI Y, LI H Q, et al.Application of game theory in integrated energy system systems: a review[J]. IEEE access, 2020, 8: 93380-93397.
[3] 葛磊蛟, 李京京, 李昌禄, 等. 面向零碳园区的综合能源系统优化运行技术综述[J]. 电网技术, 2024, 48(5): 1821-1835.
GE L J, LI J J, LI C L, et al.Overview of integrated energy system optimal operation technology for zero-carbon parks[J]. Power system technology, 2024, 48(5): 1821-1835.
[4] LIU C, LI Y, WANG Q S, et al.Optimal configuration of park-level integrated energy system considering integrated demand response and construction time sequence[J]. Energy reports, 2022, 8: 1174-1180.
[5] WANG Y L, MA Y Z, SONG F H, et al.Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response[J]. Energy, 2020, 205: 118022.
[6] PAN C C, JIN T, LI N, et al.Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses[J]. Energy, 2023, 270: 126846.
[7] 栗然, 吕慧敏, 彭湘泽, 等. 考虑动态定价和碳交易的多园区综合能源服务商低碳合作优化策略[J]. 太阳能学报, 2024, 45(3): 337-346.
LI R, LYU H M, PENG X Z, et al.Optimization strategy for low-carbon cooperation of multi-district integrated energy service providers considering dynamic pricing and carbon trading[J]. Acta energiae solaris sinica, 2024, 45(3): 337-346.
[8] 贠保记, 张恩硕, 张国, 等. 考虑综合需求响应与“双碳” 机制的综合能源系统优化运行[J]. 电力系统保护与控制, 2022, 50(22): 11-19.
YUN B J, ZHANG E S, ZHANG G, et al.Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon” mechanism[J]. Power system protection and control, 2022, 50(22): 11-19.
[9] GAO L A, FEI F, JIA Y C, et al.Optimal dispatching of integrated agricultural energy system considering ladder-type carbon trading mechanism and demand response[J]. International journal of electrical power & energy systems, 2024, 156: 109693.
[10] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[11] DUAN P F, ZHAO B X, ZHANG X H, et al.A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game[J]. Energy, 2023, 275: 127395.
[12] 顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4): 1464-1482.
GU X, WANG Q, HU Y L, et al.Distributed low-carbon optimal operation strategy of multi-microgrids integrated energy system based on Nash bargaining[J]. Power system technology, 2022, 46(4): 1464-1482.
[13] 王俐英, 林嘉琳, 宋美琴, 等. 考虑需求响应激励机制的园区综合能源系统博弈优化调度[J]. 控制与决策, 2023, 38(11): 3192-3200.
WANG L Y, LIN J L, SONG M Q, et al.Optimal dispatch of park integrated energy system considering demand response incentive mechanism[J]. Control and decision, 2023, 38(11): 3192-3200.
[14] 王瑞, 程杉, 汪业乔, 等. 基于多主体主从博弈的区域综合能源系统低碳经济优化调度[J]. 电力系统保护与控制, 2022, 50(5): 12-21.
WANG R, CHENG S, WANG Y Q, et al.Low-carbon and economic optimization of a regional integrated energy system based on a master-slave game with multiple stakeholders[J]. Power system protection and control, 2022, 50(5): 12-21.
[15] 岳子宜, 刘华志, 李永刚. 基于多阶段双重博弈的多园区随机场景低碳分布式调度优化[J]. 中国电机工程学报, 2024, 44(22): 8860-8874.
YUE Z Y, LIU H Z, LI Y G.Low-carbon distributed scheduling optimization for multi-park stochastic situations based on a multi-stage dual game[J]. Proceedings of the CSEE, 2024, 44(22): 8860-8874.
[16] LIU N, YU X H, WANG C, et al.Energy sharing management for microgrids with PV prosumers: a Stackelberg game approach[J]. IEEE transactions on industrial informatics, 2017, 13(3): 1088-1098.
[17] 帅轩越, 马志程, 王秀丽, 等. 基于主从博弈理论的共享储能与综合能源微网优化运行研究[J]. 电网技术, 2023, 47(2): 679-690.
SHUAI X Y, MA Z C, WANG X L, et al.Optimal operation of shared energy storage and integrated energy microgrid based on leader-follower game theory[J]. Power system technology, 2023, 47(2): 679-690.
[18] 田欣, 陈来军, 李笑竹, 等. 基于主从博弈和改进Shapley值的分布式光伏社区共享储能优化运行策略[J]. 电网技术, 2023, 47(6): 2252-2261.
TIAN X, CHEN L J, LI X Z, et al.Optimal scheduling for energy storage sharing among communities with photovoltaic resource based on Stackelberg game and improved shapley value[J]. Power system technology, 2023, 47(6): 2252-2261.
[19] 彭大健, 肖浩, 裴玮, 等. 基于ADMM的共享储能参与电网辅助服务的分布式优化模型[J]. 电力自动化设备, 2024, 44(2): 1-8.
PENG D J, XIAO H, PEI W, et al.Distributed optimization model of shared energy storage participating in power grid auxiliary service based on ADMM[J]. Electric power automation equipment, 2024, 44(2): 1-8.
[20] 马恺, 袁至, 李骥. 考虑综合需求响应及绿证-碳交易机制的能源系统低碳经济调度[J]. 电力需求侧管理, 2024, 26(3): 69-75.
MA K, YUAN Z, LI J.Low carbon economic dispatch of energy system considering integrated demand response and green certificate-carbon trading mechanism[J]. Power demand side management, 2024, 26(3): 69-75.
[21] 王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926-1934.
WANG Y, XIE H P, SUN X T, et al.Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1926-1934.
[22] YIN W J, LIANG W B, JI J B.Study on charge and discharge control strategy of improved PSO for EV[J]. Energy, 2024, 304: 132061.
PDF(2091 KB)

Accesses

Citation

Detail

Sections
Recommended

/