A HIGH-RESOLUTION SHORT-TERM POWER GENERATION FORECASTING METHOD FOR PHOTOVOLTAIC

Zhang Fei, Liao Qianguo, Li Xingcai, Hu Weiwei, Bo Tianli, Ma Xin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 235-243.

PDF(2964 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2964 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 235-243. DOI: 10.19912/j.0254-0096.tynxb.2024-1190

A HIGH-RESOLUTION SHORT-TERM POWER GENERATION FORECASTING METHOD FOR PHOTOVOLTAIC

  • Zhang Fei1, Liao Qianguo1, Li Xingcai1,2, Hu Weiwei1, Bo Tianli1, Ma Xin1
Author information +
History +

Abstract

This study introduces a novel hybrid forecasting model, which uniquely employs the sparrow search algorithm to optimize the parameters of variational model Decomposition. Subsequently, the model utilizes variational mode decomposition and complete ensemble empirical mode decomposition with adaptive noise for dual rounds of time series decomposition related to solar power, followed by the application of convolutional neural networks and long short-term memory with attention mechanisms to train and forecast the decomposed series data. The proposed model undergoes validation using real-world data across various weather conditions and resolutions. The results consistently demonstrate the superior predictive performance of the new method across different time resolutions (2 or 10 minutes), forecast ranges (1, 3, or 5 days), and diverse weather conditions, with a remarkable correlation coefficient of the predicted values exceeding 0.97.

Key words

photovoltaic power generation / forecasting / variational mode decomposition / hybrid models / complete ensemble empirical mode decomposition with adaptive noise

Cite this article

Download Citations
Zhang Fei, Liao Qianguo, Li Xingcai, Hu Weiwei, Bo Tianli, Ma Xin. A HIGH-RESOLUTION SHORT-TERM POWER GENERATION FORECASTING METHOD FOR PHOTOVOLTAIC[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 235-243 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1190

References

[1] LIU H Y, KHAN I, ZAKARI A, et al.Roles of trilemma in the world energy sector and transition towards sustainable energy: a study of economic growth and the environment[J]. Energy policy, 2022, 170: 113238.
[2] IEA. Renewables 2021 data explorer[Z]. Paris; Internationl Energy Agency, 2021.
[3] IEA (2024). Renewables 2024[EB/OL]. https://www.iea.org/reports/renewables-2024, Licence: CC BY 4.0, IEA, Paris.
[4] RAZA M Q, NADARAJAH M, EKANAYAKE C.On recent advances in PV output power forecast[J]. Solar energy, 2016, 136: 125-144.
[5] KAZEM H A, CHAICHAN M.Effect of humidity on photovoltaic performance based on experimental study[J]. International journal of applied engineering research, 2015, 10: 43572-7.
[6] DU Y P, FELL C J, DUCK B, et al.Evaluation of photovoltaic panel temperature in realistic scenarios[J]. Energy conversion and management, 2016, 108: 60-67.
[7] 王娟, 刘天胜, 李兴财, 等. 风对光伏组件发电性能的影响[J]. 兰州大学学报(自然科学版), 2022, 58(5): 661-667.
WANG J, LIU T S, LI X C, et al.Effect of wind on the power generation performance of photovoltaic modules[J]. Journal of Lanzhou University (natural sciences), 2022, 58(5): 661-667.
[8] QUAN Z J, LU H, ZHENG C X, et al.Experimental measurement and numerical simulation on the snow-cover process of solar photovoltaic modules and its impact on photoelectric conversion efficiency[J]. Coatings, 2023, 13(2): 427.
[9] KARDAKOS E G, ALEXIADIS M C, VAGROPOULOS S I, et al.Application of time series and artificial neural network models in short-term forecasting of PV power generation[C]//2013 48th International Universities' Power Engineering Conference (UPEC), Dublin, Ireland, 2013: 1-6.
[10] CHEN C S, DUAN S X, CAI T, et al.Online 24-h solar power forecasting based on weather type classification using artificial neural network[J]. Solar energy, 2011, 85(11): 2856-2870.
[11] BACHER P, MADSEN H, NIELSEN H A.Online short-term solar power forecasting[J]. Solar energy, 2009, 83(10): 1772-1783.
[12] FERNANDEZ-JIMENEZ L A, MUÑOZ-JIMENEZ A, FALCES A, et al. Short-term power forecasting system for photovoltaic plants[J]. Renewable energy, 2012, 44: 311-317.
[13] MAYER M J, YANG D Z, SZINTAI B.Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME[J]. Applied energy, 2023, 352: 121958.
[14] MELLIT A, PAVAN A M.Performance prediction of 20kWp grid-connected photovoltaic plant at Trieste (Italy) using artificial neural network[J]. Energy conversion and management, 2010, 51(12): 2431-2441.
[15] DING M, WANG L, BI R.An ANN-based approach for forecasting the power output of photovoltaic system[J]. Procedia environmental sciences, 2011, 11: 1308-1315.
[16] JIANG H, HONG L. Application of BP neural network to short-term-ahead generating power forecasting for PV system[J]. Advanced materials research, 2012, 608-609: 128-131.
[17] GAO M M, LI J J, HONG F, et al.Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J]. Energy, 2019, 187: 115838.
[18] ABDEL-NASSER M, MAHMOUD K.Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural computing and applications, 2019, 31(7): 2727-2740.
[19] SHARADGA H, HAJIMIRZA S, BALOG R S.Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable energy, 2020, 150: 797-807.
[20] LI P T, ZHOU K L, LU X H, et al.A hybrid deep learning model for short-term PV power forecasting[J]. Applied energy, 2020, 259: 114216.
[21] HUANG Z W, HUANG J, MIN J T.SSA-LSTM: short-term photovoltaic power prediction based on feature matching[J]. Energies, 2022, 15(20): 7806.
[22] AGGA A, ABBOU A, LABBADI M, et al.CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric power systems research, 2022, 208: 107908.
[23] LIMOUNI T, YAAGOUBI R, BOUZIANE K, et al.Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model[J]. Renewable energy, 2023, 205: 1010-1024.
[24] 王晓霞, 俞敏, 冀明, 等. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报, 2023, 44(6): 275-283.
WANG X X, YU M, JI M, et al.Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J]. Acta energiae solaris sinica, 2023, 44(6): 275-283.
[25] ABEDINIA O, RAISZ D, AMJADY N.Effective prediction model for Hungarian small-scale solar power output[J]. IET renewable power generation, 2017, 11(13): 1648-1658.
[26] XIE T, ZHANG G, LIU H C, et al.A hybrid forecasting method for solar output power based on variational mode decomposition, deep belief networks and auto-regressive moving average[J]. Applied sciences, 2018, 8(10): 1901.
[27] ZHENG S L, LI D Y.Prediction model of photovoltaic output power based on VMD-EMD-BiLSTM[C]//2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS). Wuhan, China, 2023: 1-6.
[28] 王涛, 李薇, 许野, 等. 计及相似日的VMD-FE-LSTM光伏出力组合预测模型研究[J]. 太阳能学报, 2024, 45(5): 490-499.
WANG T, LI W, XU Y, et al.Study on photovoltaic power prediction of VMD-FE-LSTM considering similar days[J]. Acta energiae solaris sinica, 2024, 45(5): 490-499.
[29] 陈龙, 张菁, 张昊立, 等. 基于VMD和射箭算法优化改进ELM的短期光伏发电预测[J]. 太阳能学报, 2023, 44(10): 135-141.
CHEN L, ZHANG J, ZHANG H L, et al.Short-term photovoltaic power generation forecast based on VMD-IAA-IHEKLM model[J]. Acta energiae solaris sinica, 2023, 44(10): 135-141.
[30] HAN L, ZHANG R C, WANG X S, et al.Multi-step wind power forecast based on VMD-LSTM[J]. IET renewable power generation, 2019, 13(10): 1690-1700.
[31] CHEN H P, WU H, KAN T Y, et al.Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction[J]. International journal of electrical power & energy systems, 2023, 154: 109420.
[32] ZHANG C, PENG T, NAZIR M S.A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables[J]. Electric power systems research, 2022, 213: 108796.
[33] MOUNIR N, OUADI H, JRHILIFA I.Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system[J]. Energy and buildings, 2023, 288: 113022.
[34] JIA P Y, ZHANG H B, LIU X M, et al.Short-term photovoltaic power forecasting based on VMD and ISSA-GRU[J]. IEEE access, 2021, 9: 105939-105950.
[35] LI K, HUANG W, HU G Y, et al.Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network[J]. Energy and buildings, 2023, 279: 112666.
[36] WANG L S, LIU Y H, LI T S, et al.Short-term PV power prediction based on optimized VMD and LSTM[J]. IEEE access, 2020, 8: 165849-165862.
[37] GAO X Z, GUO W, MEI C X, et al.Short-term wind power forecasting based on SSA-VMD-LSTM[J]. Energy reports, 2023, 9: 335-344.
[38] JING Y Z, YANG S Q, ZHANG K G.Ultra-short-term power forecast of photovoltaic power station based on VMD-LSTM model optimised by SSA[J]. Applied mathematics and nonlinear sciences, 2023, 8(2): 823-834.
[39] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[40] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia, 2002: 1942-1948.
[41] DORIGO M, BIRATTARI M, STUTZLE T.Ant colony optimization[J]. IEEE computational intelligence magazine, 2006, 1(4): 28-39.
[42] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[43] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the royal society of London series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[44] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4144-4147.
[45] TORRES J F, HADJOUT D, SEBAA A, et al.Deep learning for time series forecasting: a survey[J]. Big data, 2021, 9(1): 3-21.
[46] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9: 1735-80.
[47] YU Z, YU J, CUI Y H, et al.Deep modular co-attention networks for visual question answering[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, CA, USA, 2019: 6274-6283.
[48] SAINATH T N, VINYALS O, SENIOR A, et al.Convolutional, long short-term memory, fully connected deep neural networks[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). South Brisbane, QLD, Australia, 2015: 4580-4584.
[49] NGUYEN T N, MÜSGENS F. What drives the accuracy of PV output forecasts?[J]. Applied energy, 2022, 323: 119603.
[50] GENSLER A, HENZE J, SICK B, et al.Deep Learning for solar power forecasting: an approach using AutoEncoder and LSTM Neural Networks[C]//2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016: 2858-2865.
[51] YU D, CHOI W, KIM M, et al.Forecasting day-ahead hourly photovoltaic power generation using convolutional self-attention based long short-term memory[J]. Energies, 2020, 13(15): 4017.
[52] LI G Z, DING C J, ZHANG R, et al.Short-term prediction of PV power based on hybrid CNN-BiLSTM-attention model and VMD[C]//2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE). Guangzhou, China, 2023: 998-1003.
PDF(2964 KB)

Accesses

Citation

Detail

Sections
Recommended

/