SUPER-RESOLUTION RECONSTRUCTION OF SERIES ARC CURRENT UTILIZING TIME-GAN

Long Kui, Mou Weiqi, Li Qiuhui, Liu Jiawei, Chen Xukai, Su Sheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 260-271.

PDF(4302 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4302 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 260-271. DOI: 10.19912/j.0254-0096.tynxb.2024-1199

SUPER-RESOLUTION RECONSTRUCTION OF SERIES ARC CURRENT UTILIZING TIME-GAN

  • Long Kui1, Mou Weiqi1, Li Qiuhui1, Liu Jiawei2, Chen Xukai2, Su Sheng2
Author information +
History +

Abstract

Extracting high-frequency data related to series arc faults presents considerable challenges.To solve this problem, we propose a super-resolution reconstruction method for series arc current based on Time-GAN (Time-Generative Adversarial Network). This method aims to perform super-resolution processing on time-domain sampled current signals to obtain higher frequency time-domain signals, thereby achieving higher frequency domain signals. Firstly, a true-scale experimental platform for low-voltage arc faults in photovoltaic systems was established, and relevant data were collected at different sampling rates. Secondly, we analyzed the impact of different sampling rates on time-frequency domain data collection. Then, we applied the super-resolution algorithm to the low sampling rate time series data to generate high sampling rate time-frequency domain data, and compared it with the original high sampling rate time-frequency domain data. Experimental results demonstrate that the Time-GAN-based time super-resolution algorithm significantly enhances the sampling frequency of current signals.

Key words

series arc / electrical fire / signal sampling / Time-GAN algorithm / time-frequency domain signal reconstruction / photovoltaic system

Cite this article

Download Citations
Long Kui, Mou Weiqi, Li Qiuhui, Liu Jiawei, Chen Xukai, Su Sheng. SUPER-RESOLUTION RECONSTRUCTION OF SERIES ARC CURRENT UTILIZING TIME-GAN[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 260-271 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1199

References

[1] 牟龙华, 王伊健, 蒋伟, 等. 光伏系统直流电弧故障特征及检测方法研究[J]. 中国电机工程学报, 2016, 36(19): 5236-5244, 5405.
MU L H, WANG Y J, JIANG W, et al.Study on characteristics and detection method of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2016, 36(19): 5236-5244, 5405.
[2] 吴春华, 徐文新, 李智华, 等. 光伏系统直流侧故障电弧危害分析及保护策略[J]. 太阳能学报, 2020, 41(9): 198-206.
WU C H, XU W X, LI Z H, et al.DC arc-fault hazards analysis and protection in photovoltaic system[J]. Acta energiae solaris sinica, 2020, 41(9): 198-206.
[3] 蔡志远, 鲍洁秋. 电弧故障识别及保护的新技术[J]. 电器与能效管理技术, 2014(10): 24-27.
CAI Z Y, BAO J Q.New intelligent technique of arc fault[J]. Electrical & energy management technology, 2014(10): 24-27.
[4] 李智华, 钟杰人, 吴春华, 等. 光伏电站中故障电弧信号的传输行为研究[J]. 太阳能学报, 2021, 42(7): 152-160.
LI Z H, ZHONG J R, WU C H, et al.Study on transmission behavior of fault arc signal in photovoltaic power plant[J]. Acta energiae solaris sinica, 2021, 42(7): 152-160.
[5] 朱晖. 民用建筑电气火灾原因调查及防范策略[J]. 工程建设与设计, 2023(12): 40-42.
ZHU H.Cause investigation and prevention strategy of electrical fire in civil buildings[J]. Construction & design for engineering, 2023(12): 40-42.
[6] LEZAMA J, SCHWEITZER P, WEBER S, et al.Frequency analysis to arcing detection and prototyping FPGA approach[C]//2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013), Newport, RI, USA, 2013: 1-6.
[7] 陈永辉, 熊兰, 范禹邑, 等. 基于互感器电压信号的光伏电弧故障检测方法[J]. 太阳能学报, 2021, 42(10): 68-75.
CHEN Y H, XIONG L, FAN Y Y, et al.Photovoltaic arc fault detection method based on transformer voltage signal[J]. Acta energiae solaris sinica, 2021, 42(10): 68-75.
[8] 杨艺, 董爱华, 付永丽. 低压故障电弧检测概述[J]. 低压电器, 2009(5): 1-4, 27.
YANG Y, DONG A H, FU Y L.Overview of low voltage fault arc detection[J]. Low voltage apparatus, 2009(5): 1-4, 27.
[9] 刘璇, 熊兰, 王韵, 等. 光伏电站串联型直流电弧的检测算法与保护实验研究[J]. 太阳能学报, 2022, 43(1): 348-355.
LIU X, XIONG L, WANG Y, et al.Experimental study on detection algorithm and protection of DC series arc in photovoltaic station[J]. Acta energiae solaris sinica, 2022, 43(1): 348-355
[10] 张杰, 马宏伟. 矿用高压开关柜的弧光监测与保护系统[J]. 电力系统保护与控制, 2013, 41(11): 141-145.
ZHANG J, MA H W.Online monitoring and protection system for the arc fault of the mining high-voltage switchgear[J]. Power system protection and control, 2013, 41(11): 141-145.
[11] 熊庆, 汲胜昌, 陆伟锋, 等. 低气压下串联直流电弧故障电磁辐射幅值及频率特性[J]. 中国电机工程学报, 2017, 37(4): 1071-1080.
XIONG Q, JI S C, LU W F, et al.Amplitude and frequency characteristics of electromagnetic radiation of series DC arc faults under low pressure[J]. Proceedings of the CSEE, 2017, 37(4): 1071-1080.
[12] 王尧, 马桐桐, 赵宇初, 等. 基于电磁辐射时延估计的串联光伏直流电弧故障定位方法[J]. 电工技术学报, 2023, 38(8): 2233-2243.
WANG Y, MA T T, ZHAO Y C, et al.Series DC arc-fault location method based on electromagnetic radiation delay estimation for photovoltaic systems[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2233-2243.
[13] 王尧, 韦强强, 葛磊蛟, 等. 基于电弧电流高频分量的串联交流电弧故障检测方法[J]. 电力自动化设备, 2017, 37(7): 191-197.
WANG Y, WEI Q Q, GE L J, et al.Series AC arc fault detection based on high-frequency components of arc current[J]. Electric power automation equipment, 2017, 37(7): 191-197.
[14] PARISE G, MARTIRANO L, LAURINI M.Simplified arc-fault model: the reduction factor of the arc current[J]. IEEE transactions on industry applications, 2013, 49(4): 1703-1710.
[15] 吴建明, 杨广亮, 黄文涛. 开口式电流互感器在低压配电系统中的应用[J]. 电气技术, 2012, 13(8): 154-156.
WU J M, YANG G L, HUANG W T.Application of open current transformer in low voltage distribution system[J]. Electrical engineering, 2012, 13(8): 154-156.
[16] MIRANDA V, KRSTULOVIC J, KEKO H, et al.Reconstructing missing data in state estimation with autoencoders[J]. IEEE transactions on power systems, 2012, 27(2): 604-611.
[17] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27: 2672-2680.
[18] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[19] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2242-2251.
[20] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 214-223.
[21] YOON J, JARRETT D, VAN DER SCHAAR M. Time-series generative adversarial networks[J]. Advances in neural information processing systems, 2019, 32.
[22] LIU G L, GU J J, ZHAO J H, et al.Super resolution perception for smart meter data[J]. Information sciences, 2020, 526: 263-273.
[23] GU J, CHEN H, LIU G, et al. Super-resolution perception for industrial sensor data[J]. arXiv preprint arXiv:1809.06687, 2018.
[24] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26.
YANG L, WU Y Q, WANG J L, et al.Research on recurrent neural network[J]. Journal of computer applications, 2018, 38(S2): 1-6, 26.
[25] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
WANG X, WU J, LIU C, et al.Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
[26] 杨茂, 杨琼琼, 苏欣. 基于风电场等效平均风速的风电功率日前预测研究[J]. 太阳能学报, 2020, 41(2): 85-92.
YANG M, YANG Q Q, SU X.Research of day-ahead wind power forecast based on wind farm equivalent mean wind speed[J]. Acta energiae solaris sinica, 2020, 41(2): 85-92.
[27] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
ZHANG C, GUO Y, LI M.Review of development and application of artificial neural network models[J]. Computer engineering and applications, 2021, 57(11): 57-69.
[28] 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术, 2017, 15(5): 8-11.
CHEN L, WANG Z, WANG G.Application of LSTM networks in short-term power load forecasting under the deep learning framework[J]. Electric power information and communication technology, 2017, 15(5): 8-11.
[29] 刘洋. 基于GRU神经网络的时间序列预测研究[D]. 成都: 成都理工大学, 2017.
LIU Y.The research of time series prediction based on GRU neural network[D]. Chengdu: Chengdu University of Technology, 2017.
[30] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376.
ZHAO B, WANG Z P, JI W J, et al.A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power system technology, 2019, 43(12): 4370-4376.
PDF(4302 KB)

Accesses

Citation

Detail

Sections
Recommended

/