STUDY ON COMPOSITE MODIFICATION AND UV AGING MECHANISM OF PCB ENCAPSULANT FILM

Zhang Yuanjuan, Shen Fuhua, Xu Jinbo, Zhang Lijun, Lin Huan

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 272-279.

PDF(3091 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3091 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 272-279. DOI: 10.19912/j.0254-0096.tynxb.2024-1212

STUDY ON COMPOSITE MODIFICATION AND UV AGING MECHANISM OF PCB ENCAPSULANT FILM

  • Zhang Yuanjuan, Shen Fuhua, Xu Jinbo, Zhang Lijun, Lin Huan
Author information +
History +

Abstract

With a composite film made of polyvinyl butyral, boron nitride, and carbon nanotubes as the study subject, artificial UV radiation experiments were conducted to investigate the two critical factors influencing the thermal conductivity of composite films: irradiation time and intensity. The transient electrothermal technology was used to measure the thermophysical properties of the film. The findings indicate that the composite film performs best at a mass ratio of carbon nanotubes to boron nitride of 5:5. The thermal conductivity of the composite film still approaches 0.26 W/(m·K) at a UV radiation intensity of 10 W/m2. The material’s internal structure starts to break down and deteriorate as the radiation duration increases. In order to investigate the UV aging mechanism of the composite adhesive film and the effects of cross-linking and degradation reactions on the material thermal properties, alterations in the characteristic peaks of the samples pre- and post-UV irradiation were analyzed using solution-state NMR.

Key words

photovoltaic modules / thermal conductivity / UV radiation / encapsulatnt film / composite modification thermal properties / transient electrothermal technology

Cite this article

Download Citations
Zhang Yuanjuan, Shen Fuhua, Xu Jinbo, Zhang Lijun, Lin Huan. STUDY ON COMPOSITE MODIFICATION AND UV AGING MECHANISM OF PCB ENCAPSULANT FILM[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 272-279 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1212

References

[1] 董穆, 姚雪容, 张江茹, 等. 太阳能电池封装胶膜技术研究进展[J]. 石油化工, 2023, 52(7): 992-999.
DONG M, YAO X R, ZHANG J R, et al.Research progress in encapsulants of solar modules[J]. Petrochemical technology, 2023, 52(7): 992-999.
[2] 鄢伟安, 孔文琪, 刘卫东, 等. 具有初始退化随机特征的光伏组件可靠性评估[J]. 太阳能学报, 2022, 43(3): 152-157.
YAN W A, KONG W Q, LIU W D, et al.Reliability assessment of photovoltaic modules with initial degradation random characteristics[J]. Acta energiae solaris sinica, 2022, 43(3): 152-157.
[3] 李海波, 戚嵘嵘, 冯杰, 等. 太阳能电池用EVA封装胶膜的性能研究[J]. 中国胶粘剂, 2016, 25(4): 22-25, 62.
LI H B, QI R R, FENG J, et al.Study on properties of EVA encapsulant for solar cell[J]. China adhesives, 2016, 25(4): 22-25, 62.
[4] 余鹏, 李伟博, 唐舫成, 等. 太阳能电池封装材料研究进展[J]. 广州化工, 2011, 39(3): 34-35, 58.
YU P, LI W B, TANG F C, et al.Research progress of encapsulants for solar cells[J]. Guangzhou chemical industry, 2011, 39(3): 34-35, 58.
[5] 董莉, 周潇云, 刘景洋, 等. 废光伏组件EVA热失重动力学及产物分布研究[J]. 太阳能学报, 2020, 41(4): 14-19.
DONG L, ZHOU X Y, LIU J Y, et al.Research on thermogravimetric dynamics and products distribution of EVA in waste photovoltaic modules[J]. Acta energiae solaris sinica, 2020, 41(4): 14-19.
[6] 任毅, 姚雪容, 马蓓蓓, 等. 太阳能电池封装膜的应用现状及发展趋势[J]. 石油化工, 2014, 43(5): 481-490.
REN Y, YAO X R, MA B B, et al.Development and application of encapsulants for solar cells[J]. Petrochemical technology, 2014, 43(5): 481-490.
[7] 石孟可, 范靖, 张军. 低温氟膜背板及光伏组件老化性能研究[J]. 太阳能学报, 2024, 45(7): 525-531.
SHI M K, FAN J, ZHANG J.Study on aging property of low temperature resistant PVDF film back-sheets and corresponding photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(7): 525-531.
[8] 黄格省, 师晓玉, 丁文娟, 等. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046.
HUANG G S, SHI X R, DING W J, et al.Development status and prospect analysis of photovoltaic cell packaging adhesive film materials[J]. Chemical industry and engineering progress, 2023, 42(10): 5037-5046.
[9] GADDAM S K, POTHU R, BODDULA R.Advanced polymer encapsulates for photovoltaic devices-a review[J]. Journal of materiomics, 2021, 7(5): 920-928.
[10] LA NOTTE L, POLINO G, VERZOLA P, et al.Influence of encapsulation materials on the optical properties and conversion efficiency of heat-sealed flexible polymer solar cells[J]. Surface and coatings technology, 2014, 255: 69-73.
[11] 邹海波, 李宾, 袁晓, 等. 功能填料对乙烯-醋酸乙烯共聚物(EVA)的复合改性及性能[J]. 材料科学与工程学报, 2020, 38(6): 928-933, 1013.
ZOU H B, LI B, YUAN X, et al.Modification of ethylene-vinyl acetate copolymer compound with functional fillers and its performance[J]. Journal of materials science and engineering, 2020, 38(6): 928-933, 1013.
[12] 朱威武, 李宾, 袁晓, 等. EVA封装胶膜的功能复合改性与耐老化性能[J]. 太阳能学报, 2019, 40(6): 1576-1582.
ZHU W W, LI B, YUAN X, et al.Modified and aging properties of functional compostie EVA encapsulating film[J]. Acta energiae solaris sinica, 2019, 40(6): 1576-1582.
[13] WANG Z F, WU Z J, WENG L, et al.A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects[J]. Advanced functional materials, 2023, 33(36): 2301549.
[14] 张东亮, 马晓敏, 李红莲, 等. 纳米ATO/PVB隔热透明原位复合材料的制备及性能[J]. 复合材料学报, 2013, 30(5): 41-48.
ZHANG D L, MA X M, LI H L, et al.Preparation and properties of heat-insulated and transparent nano-ATO/PVB in situ composites[J]. Acta materiae compositae sinica, 2013, 30(5): 41-48.
[15] 张蒙, 徐阳. 聚合物基纳米复合材料的制备研究进展[J]. 化工新型材料, 2018, 46(3): 19-22.
ZHANG M, XU Y.Preparation and research progress of polymer-based nanocomposite[J]. New chemical materials, 2018, 46(3): 19-22.
[16] GB/T 16422B/T 16422.3—2022, 塑料实验室光源暴露试验方法第3部分:荧光紫外灯[S].
GB/T 16422B/T 16422.3—2022, Plastics—methods of exposure to laboratory light sources: Part 3: Fluorescent UV lamps[S]. Beijing: Standards Press of China, 2022.
[17] 路芳, 史华红, 李岱远, 等. 高效长寿命光转换太阳能电池封装胶膜的制备及性能[J]. 塑料工业, 2020, 50(6): 191-196.
LU F, SHI H H, LI D Y, et al.Preparation and properties of efficient and long life photoconversion solar cells packaging film[J]. China plastics industry, 2020, 50(6): 191-196.
[18] 杨再猛. 抗紫外吸收剂和抗氧剂对一种新型太阳能光伏膜光老化性能的影响[J]. 塑料助剂, 2020, 2(2): 38-43.
YANG Z M.Photoaging properties of anti-ultraviolet additives and antioxidants in a novel solar photovoltaic film[J]. Plastics additives, 2020, 2(2): 38-43.
[19] 李岱远, 路芳, 史华红, 等. 一种新型光转换太阳能电池封装胶膜的制备和性能评价[J]. 广东化工, 2023, 50(4): 55-57, 46.
LI D Y, LU F, SHI H H, et al.Construction and characterization of a new photoconversion solar cells packaging film[J]. Guangdong chemical industry, 2023, 50(4): 55-57, 46.
[20] 张洪彬, 刘雅智, 蔡汝山, 等. 非金属材料紫外光老化试验方法与标准研究[J]. 电子产品可靠性与环境试验, 2016, 34(1): 6-10.
ZHANG H B, LIU Y Z, CAI R S, et al.Research on the methods and standards of the UV aging test of nonmetal material[J]. Electronic product reliability and environmental testing, 2016, 34(1): 6-10.
[21] ASTM G-154, 非金属材料暴露于荧光设备的紫外线中的测试方法标准[S].
ASTM G-154, Standard practice for operating fluorescent ultraviolet(UV) lamp apparatus for exposure of nonmetallic materials[S].
[22] LIN H, LIU X B, KOU A J, et al.One-dimensional thermal characterization at the micro/nanoscale: review of the TET technique[J]. International journal of thermophysics, 2019, 40(12): 108.
[23] LIN H, XU S, ZHANG Y Q, et al.Electron transport and bulk-like behavior of Wiedemann-Franz law for sub-7 nm-thin iridium films on silkworm silk[J]. ACS applied materials & interfaces, 2014, 6(14): 11341-11347.
[24] LIN H, SHEN F H, XU J B, et al.Thermal transport in extremely confined metallic nanostructures: TET characterization[J]. Nanomaterials, 2023, 13(1): 140.
[25] XIE Y S, XU Z L, XU S, et al.The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit[J]. Nanoscale, 2015, 7(22): 10101-10110.
[26] XU Z L, WANG X W, XIE H Q.Promoted electron transport and sustained phonon transport by DNA down to 10 K[J]. Polymer, 2014, 55(24): 6373-6380.
[27] QIU L, ZHU N, FENG Y H, et al.A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids[J]. Physics reports, 2020, 843: 1-81.
[28] LIN H, HUNTER N, ZOBEIRI H, et al.Ultra-high thermal sensitivity of graphene microfiber[J]. Carbon, 2023, 203: 620-629.
[29] XIE Y S, XU S, XU Z L, et al.Interface-mediated extremely low thermal conductivity of graphene aerogel[J]. Carbon, 2016, 98: 381-390.
[30] 孙玉川, 张建伦, 林欢, 等. 碳纳米管/氧化锌晶须改性聚乙烯醇缩丁醛复合材料导热性能研究[J]. 绝缘材料, 2021, 54(7): 31-36.
SUN Y C, ZHANG J L, LIN H, et al.Study on thermal conductivity of MWCNTs/T-ZnOw modified PVB composites[J]. Insulating materials, 2021, 54(7): 31-36.
[31] 钟建永, 李志辉, 丁玲, 等. 聚乙烯醇缩丁醛的热氧老化机理[J]. 材料科学与工程学报, 2019, 37(6): 928-933.
ZHONG J Y, LI Z H, DING L, et al.Study on thermo-oxidative aging mechanism of polyvinyl butyral[J]. Journal of materials science and engineering, 2019, 37(6): 928-933.
[32] CHANDANA G, BORA P J, RAMAMURTHY P C, et al.Exploring robust microwave absorption properties of functional polyvinyl butyral (PVB) via facile cross-linking and data-driven material discovery[J]. Applied materials today, 2024, 39: 102337.
[33] SONG Z W, SUN Y M, WANG J, et al.Effects of g-C3N4 on the corrosion protection performance of polyvinyl butyral coatings[J]. Progress in organic coatings, 2024, 187: 108139.
[34] MEI X L, JIAO S L, LI X Y, et al.Effect of the antioxidants on the stability of poly(vinyl butyral) and kinetic analysis[J]. Journal of thermal analysis and calorimetry, 2014, 116(3): 1345-1349.
PDF(3091 KB)

Accesses

Citation

Detail

Sections
Recommended

/