STUDY ON IMPACT OF ICING ON BLADE AERODYNAMIC PERFORMANCE BASED ON MODEL EXPERIMENTS

Ji Yang, Yu Dongwei, Liu Houli, Jing Xueqi, Zhang Dayong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 658-666.

PDF(3628 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3628 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 658-666. DOI: 10.19912/j.0254-0096.tynxb.2024-1218

STUDY ON IMPACT OF ICING ON BLADE AERODYNAMIC PERFORMANCE BASED ON MODEL EXPERIMENTS

  • Ji Yang1, Yu Dongwei1,2, Liu Houli1, Jing Xueqi1, Zhang Dayong1,3
Author information +
History +

Abstract

The NACA0012 airfoil was selected as the subject of study to investigate the three-dimensional flow characteristics and aerodynamic properties of iced airfoils. Model experiments were conducted using a direct-current wind tunnel to elucidate the changes in lift and drag forces of the iced airfoil under different incoming flow velocities. Aerodynamic performance studies on wind turbine blades under various icing conditions were carried out using the STAR-CCM+ software, analyzing the impact of icing on the surface pressure coefficients and aerodynamic performance parameters of the airfoil. The research findings indicated that the presence of clear ice had the most significant impact on the aerodynamic performance of the blades. At an incoming flow velocity of 10 m/s, the lift coefficient of the airfoil decreased by 34.9% and the drag coefficient increased by 97.2% with clear ice attachment; with mixed ice, the lift coefficient decreased by 33.6% and the drag coefficient increased by 22.7%; and with rime ice, the lift coefficient decreased by 24.1% and the drag coefficient increased by 27.2%.

Key words

wind turbines airfoil / wind tunnel experiment / wind turbine blades / icing numerical calculation / aerodynamics performance

Cite this article

Download Citations
Ji Yang, Yu Dongwei, Liu Houli, Jing Xueqi, Zhang Dayong. STUDY ON IMPACT OF ICING ON BLADE AERODYNAMIC PERFORMANCE BASED ON MODEL EXPERIMENTS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 658-666 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1218

References

[1] PARENT O, ILINCA A.Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold regions science and technology, 2011, 65(1): 88-96.
[2] 王强, 刘宇, 李维浩, 等. 偏航条件下覆冰风力机气动特性研究[J]. 工程热物理学报, 2022, 43(4): 918-928.
WANG Q, LIU Y, LI W H, et al.Study on aerodynamic performance of ice accreted wind turbine under yaw condition[J]. Journal of engineering thermophysics, 2022, 43(4): 918-928.
[3] WALLENIUS T, LEHTOMÄKI V. Overview of cold climate wind energy: challenges, solutions, and future needs[J]. WIREs energy and environment, 2016, 5(2): 128-135.
[4] BAZILEVS Y, HSU M C, AKKERMAN I, et al.3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics[J]. International journal for numerical methods in fluids, 2011, 65(1/2/3): 207-235.
[5] 刘强, 杨科, 黄宸武, 等. 5MW大型风力机气动特性计算及分析[J]. 工程热物理学报, 2012, 33(7): 1155-1159.
LIU Q, YANG K, HUANG C W, et al.Simulation and analysis of the aerodynamic characteristics of a 5MW wind turbine[J]. Journal of engineering thermophysics, 2012, 33(7): 1155-1159.
[6] SRINATH D N, MITTAL S.Optimal aerodynamic design of airfoils in unsteady viscous flows[J]. Computer methods in applied mechanics and engineering, 2010, 199(29/30/31/32): 1976-1991.
[7] 王旭东, 夏洪均. 风力发电机风轮输出功率性能优化研究[J]. 计算机仿真, 2017, 34(3): 110-113.
WANG X D, XIA H J.Optimization study on the output power and performance of wind turbine rotor[J]. Computer simulation, 2017, 34(3): 110-113.
[8] LAGDANI O, TARFAOUI M, NACHTANE M, et al.A numerical investigation of the effects of ice accretion on the aerodynamic and structural behavior of offshore wind turbine blade[J]. Wind engineering, 2021, 45(6): 1433-1446.
[9] 刘哲. 结冰对风力机叶片气动性能的影响研究[D]. 兰州: 兰州理工大学, 2022.
LIU Z.Influence of icing on aerodynamic performance of wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2022.
[10] 付忠广, 石黎. 覆冰条件下风力机翼型气动性能的研究[J]. 太阳能学报, 2016, 37(3): 609-616.
FU Z G, SHI L.Aerodynamic performance of wind turbine airfoil under icing conditions[J]. Acta energiae solaris sinica, 2016, 37(3): 609-616.
[11] 白旭, 杜越, 曹慧清, 等. 明冰对寒区海上风力机叶片气动性能影响的分析[J]. 中国造船, 2023, 64(1): 34-46.
BAI X, DU Y, CAO H Q, et al.Study on aerodynamic performance of offshore wind turbine blades under glaze ice condition in cold region[J]. Shipbuilding of China, 2023, 64(1): 34-46.
[12] 李岩, 迟媛, 冯放, 等. 垂直轴风力机叶片表面结冰的风洞试验[J]. 工程热物理学报, 2012, 33(11): 1872-1875.
LI Y, CHI Y, FENG F, et al.Wind tunnel test on icing on blade used for vertical axis wind turbine[J]. Journal of engineering thermophysics, 2012, 33(11): 1872-1875.
[13] 任晓凯. 小型风力发电机叶片覆冰的气动力学特性研究[D]. 重庆: 重庆大学, 2016.
REN X K.Study on aerodynamic characteristics of ice-covered blades of small wind turbines[D]. Chongqing: Chongqing University, 2016.
[14] ISO 12494, Atmospheric icing of structures[S].2001-08-15, Geneva.
[15] International Electrotechnical Commission.Wind turbines-Part 12-1: power performance measurements of electricity producing wind turbines[S]. IEC 61400-12-1, 2005.
[16] WOEBBEKING M, ARGYRIADIS K. New guidelines for the certification of offshore wind turbines[C]//ISOPE International Ocean and Polar Engineering Conference. Anchorage, USA, ISOPE, 2013: ISOPE-I-13-136.
[17] 蔡新, 王浩, 汪亚洲, 等. 风力发电机叶片[M]. 2版. 北京: 中国水利水电出版社, 2022.
CAI X, WANG H, WANG Y Z, et al.Wind turbine blades[M]. 2nd ed. Beijing: China Water & Power Press, 2022.
[18] 孔祥逸, 张宝峰, 于东玮, 等. 风力机叶片表面覆冰影响因素分析[J]. 大连理工大学学报, 2023, 63(1): 52-60.
KONG X Y, ZHANG B F, YU D W, et al.Analysis of the factors influencing the ice cover on the blade surface of wind turbines[J]. Journal of Dalian University of Technology, 2023, 63(1): 52-60.
[19] CHEN P W, BAI C J, WANG W C.Experimental and numerical studies of low aspect ratio wing at critical Reynolds number[J]. European journal of mechanics - B/fluids, 2016, 59: 161-168.
PDF(3628 KB)

Accesses

Citation

Detail

Sections
Recommended

/