LITHIUM-ION BATTERY REMAINING USEFUL LIFE PREDICTION METHOD BASED ON IMPROVED HEAP OPTIMIZATION ALGORITHM AND TIMESNET NEURAL NETWORK

Zhang Chu, Wang Yiwei, Zhang Yue, Chen Jialei, Peng Tian

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 98-108.

PDF(5921 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5921 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 98-108. DOI: 10.19912/j.0254-0096.tynxb.2024-1219

LITHIUM-ION BATTERY REMAINING USEFUL LIFE PREDICTION METHOD BASED ON IMPROVED HEAP OPTIMIZATION ALGORITHM AND TIMESNET NEURAL NETWORK

  • Zhang Chu1,2, Wang Yiwei1, Zhang Yue1, Chen Jialei1, Peng Tian1,2
Author information +
History +

Abstract

This paper proposes a method for predicting the remaining useful life (RUL) of lithium-ion batteries based on an improved heap-based optimizer (HBO) and a TimesNet neural network. Firstly, kernel principal component analysis (KPCA) is used to perform dimensionality reduction and redundancy removal on the raw data to extract key features. Subsequently, a deep learning model based on TimesNet is constructed to evaluate the RUL of the battery. To further improve the performance of the model, the hyperparameters of the TimesNet model are optimized using the improved heap-based optimizer (IHBO). In addition, an error correction mechanism is introduced to enhance the prediction accuracy. Experimental results show that this method has high accuracy in predicting the RUL of lithium-ion batteries, with a root mean square error(RMSE) of 1.9937 time, which is superior to traditional time-series models.

Key words

lithium-ion battery / remaining useful life / machine learning / heap-based optimizer algorithm / TimesNet / error correction

Cite this article

Download Citations
Zhang Chu, Wang Yiwei, Zhang Yue, Chen Jialei, Peng Tian. LITHIUM-ION BATTERY REMAINING USEFUL LIFE PREDICTION METHOD BASED ON IMPROVED HEAP OPTIMIZATION ALGORITHM AND TIMESNET NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 98-108 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1219

References

[1] GENG J X, GAO S F, SUN X, et al.Potential of electric vehicle batteries second use in energy storage systems: the case of China[J]. Energy, 2022, 253: 124159.
[2] 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302.
YIN J, LIU B, SUN G B, et al.Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302.
[3] 郭小强, 郑见杰, 张晓明. 基于电化学模型的锂离子电池寿命预测分析[J]. 电源技术, 2023, 47(5): 650-652.
GUO X Q, ZHENG J J, ZHANG X M.Life prediction analysis of lithium ion battery based on electrochemical model[J]. Chinese journal of power sources, 2023, 47(5): 650-652.
[4] 谢奕展, 程夕明. 锂离子电池简化电化学模型理论误差分析研究[J]. 机械工程学报, 2022, 58(22): 37-55.
XIE Y Z, CHENG X M.Investigation on theoretical errors of simplified electrochemical models for lithium-ion batteries[J]. Journal of mechanical engineering, 2022, 58(22): 37-55.
[5] SONG Y C, LIU D T, HOU Y D, et al.Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm[J]. Chinese journal of aeronautics, 2018, 31(1): 31-40.
[6] XIONG R, SUN F C, CHEN Z, et al.A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles[J]. Applied energy, 2014, 113: 463-476.
[7] 肖周晓. 基于模型和数据融合方法的锂离子电池剩余使用寿命预测[D]. 武汉: 华中科技大学, 2022.
XIAO Z X.Remaining useful life prediction of lithium-ion batteries based on model and data fusion methods[J]. Wuhan: Huazhong University of Science and Technology, 2022.
[8] DUAN W X, SONG S X, XIAO F, et al.Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of energy storage, 2023, 65: 107322.
[9] 韦海燕, 陈静, 王惠民, 等. 新陈代谢灰色粒子滤波实现电池剩余寿命预测[J]. 电工技术学报, 2020, 35(6): 1181-1188.
WEI H Y, CHEN J, WANG H M, et al.Remaining useful life prediction of battery using metabolic grey particle filter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1181-1188.
[10] LI X, MA Y, ZHU J J.An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine[J]. Measurement, 2021, 184: 109935.
[11] 贺宁, 张思媛, 李若夏, 等. 基于高斯混合集合卡尔曼滤波器的锂电池剩余使用寿命预测[C]//2022中国自动化大会. 厦门, 中国, 2022.
HE N, ZHANG S Y, LI R X, et al.Lithium battery remaining useful life prediction based on Gaussian mixture ensemble Kalman filter[C]//2022 Chinese Automation Congress. Xiamen, China, 2022.
[12] 刘亚姣, 刘振泽, 宋晨辉. 基于改进粒子滤波的锂离子电池RUL预测[J]. 吉林大学学报(信息科学版), 2018, 36(2): 173-177.
LIU Y J, LIU Z Z, SONG C H.Improved particle filter algorithm for RUL prediction of lithium-ion batteries[J]. Journal of Jilin University (information science edition), 2018, 36(2): 173-177.
[13] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
HUANG K, DING H, GUO Y F, et al.Lithium-ion battery life prediction based on data preprocessing and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
[14] ZHOU Y P, HUANG M H.Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics reliability, 2016, 65: 265-273.
[15] 王小明, 何叶, 王路路, 等. 基于DWD-SVR模型的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2025, 46(2): 52-59.
WANG X M, HE Y, WANG L L, et al.Rul prediction for lithium-ion batteries based on DWD-SVR model[J]. Acta energiae solaris sinica, 2025, 46(2): 52-59.
[16] YANG P, YANG H D, MENG X B, et al.Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model[J]. Journal of energy storage, 2024, 75: 109741.
[17] ANSARI S, AYOB A, HOSSAIN LIPU M S, et al. Optimized data-driven approach for remaining useful life prediction of lithium-ion batteries based on sliding window and systematic sampling[J]. Journal of energy storage, 2023, 73: 109198.
[18] 夏向阳, 吕崇耿, 吴小忠, 等. 基于混合模型的储能用锂离子电池剩余寿命预测方法研究[J]. 太阳能学报, 2024, 45(10): 726-735.
XIA X Y, LYU C G, WU X Z, et al.Research on remaining life prediction method of lithium-ion battery for energy storage based on hybrid model[J]. Acta energiae solaris sinica, 2024, 45(10): 726-735.
[19] 梁佳佳, 何晓霞, 肖浩逸. 基于CS-DBN的锂电池剩余寿命预测[J]. 太阳能学报, 2024, 45(3): 251-259.
LIANG J J, HE X X, XIAO H Y.Lithium Battery Remaining Life Prediction Based on CS-DBN[J]. Acta energiae solaris sinica, 2024, 45(3): 251-259.
[20] AL-QIZWINI M, BARJASTEH I, AL-QASSAB H, et al.Deep learning algorithm for autonomous driving using GoogLeNet[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA, 2017: 89-96.
[21] WU H, HU T, LIU Y, et al.Timesnet: temporal 2d-variation modeling for general time series analysis[EB/OL] arXiv preprint arXiv:2210.02186, 2022, 1(1): 1-20.
[22] 何冰琛,杨薛明,王劲松,等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Remaining useful life prediction of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[23] ASKARI Q, SAEED M, YOUNAS I.Heap-based optimizer inspired by corporate rank hierarchy for global optimization[J]. Expert systems with applications, 2020, 161: 113702.
[24] THARWAT A, ELHOSENY M, HASSANIEN A E, et al.Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm[J]. Cluster computing, 2019, 22(2): 4745-4766.
PDF(5921 KB)

Accesses

Citation

Detail

Sections
Recommended

/