SHORT-TERM PREDICTION OF PHOTOVOLTAIC POWER BASED ON IMPROVED PHASE SPACE RECONSTRUCTION AND MULTI-CHANNEL CONVOLUTION-FPN NETWORK

Zhao Xin, Luo Jiabin, Jiang Anqi, Hu Hao, Ma Yukun, Zhang Shuqing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 299-307.

PDF(3919 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3919 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (11) : 299-307. DOI: 10.19912/j.0254-0096.tynxb.2024-1239

SHORT-TERM PREDICTION OF PHOTOVOLTAIC POWER BASED ON IMPROVED PHASE SPACE RECONSTRUCTION AND MULTI-CHANNEL CONVOLUTION-FPN NETWORK

  • Zhao Xin1, Luo Jiabin2, Jiang Anqi2, Hu Hao2, Ma Yukun2, Zhang Shuqing2
Author information +
History +

Abstract

Aiming at the problem that the large uncertainty of PV power leads to its low prediction accuracy, a short-term prediction method of PV power based on improved phase space reconstruction and multi-channel convolution-feature pyramid networks(FPN) is proposed. Firstly, the phase space reconstruction method is improved to reduce the computation by finding the delay time via maximum joint entropy based on symbolic analysis, and the embedding dimension for unfolding the chaotic structure is quickly and automatically determined by the improved Cao algorithm, which has accuracy and efficiency. Then we reconstruct the PV power with the improved phase space method and prove that it has chaotic characteristics, extract the chaotic features by multi-channel convolutional neural network (Mul-CNN), and at the same time, utilize the FPN network to fuse the chaotic features of the PV power with the meteorological features as the dynamic input features of the FPN network, to fully exploit the chaotic features of the FPN network. network, fully exploiting the spatial features between the data, and finally obtaining the prediction results through multiple fully connected layers. The method is evaluated on a domestic public dataset to do experiments, and compared with other network models, it proves that the prediction model is more accurate.

Key words

neural networks / feature extraction / photovoltaic power generation / phase space methods / power prediction

Cite this article

Download Citations
Zhao Xin, Luo Jiabin, Jiang Anqi, Hu Hao, Ma Yukun, Zhang Shuqing. SHORT-TERM PREDICTION OF PHOTOVOLTAIC POWER BASED ON IMPROVED PHASE SPACE RECONSTRUCTION AND MULTI-CHANNEL CONVOLUTION-FPN NETWORK[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 299-307 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1239

References

[1] 牛威如, 魏凯, 王维洲, 等. 光伏新能源发电负荷不确定性补偿及微电网调度优化研究[J]. 自动化与仪器仪表, 2023(9): 156-160.
NIU W R, WEI K, WANG W Z, et al.Research on load uncertainty compensation and dispatching optimization of micro-grid[J]. Automation & instrumentation, 2023(9): 156-160.
[2] BASU M, DAS S.Short-term pumped storage hydrothermal generation scheduling considering uncertainty of load demand and renewable energy sources[J]. Journal of energy storage, 2023, 70: 107933.
[3] 孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17.
KONG X Y, MA Y Y, AI Q, et al.Review on electricity consumption characteristic modeling and load forecasting for diverse users in new power system[J]. Automation of electric power systems, 2023, 47(13): 2-17.
[4] ELTAWIL M A, ZHAO Z M.Grid-connected photovoltaic power systems: technical and potential problems: a review[J]. Renewable and sustainable energy reviews, 2010, 14(1): 112-129.
[5] TSAI W C, TU C S, HONG C M, et al.A review of state-of-the-art and short-term forecasting models for solar PV power generation[J]. Energies, 2023, 16(14): 5436.
[6] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaries sinica, 2022, 43(12): 88-97.
[7] 秦宇, 许野, 王鑫鹏, 等. 基于改进FCM-LSTM的光伏出力短期预测研究[J]. 太阳能学报, 2024, 45(8): 304-313.
QIN Y, XU Y, WANG X P, et al.Study on short-term photovoltaic output prediction based on improved FCM-LSTM[J]. Acta energiae solaries sinica, 2024, 45(8): 304-313.
[8] XIAO Z N, HUANG X Q, LIU J, et al.A novel method based on time series ensemble model for hourly photovoltaic power prediction[J]. Energy, 2023, 276: 127542.
[9] 吴春华, 董阿龙, 李智华, 等. 基于图相似日和PSO-XGBoost 的光伏功率预测[J]. 高电压技术, 2022, 48(8): 3250-3259.
WU C H, DONG A L, LI Z H, et al.Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High voltage engineering, 2022, 48(8): 3250-3259.
[10] 王育飞, 郝德扬, 薛花, 等. 计及云图和混沌特性的光伏功率组合预测方法[J]. 太阳能学报, 2023, 44(12): 74-81.
WANG Y F, HAO D Y, XUE H, et al.Combined forecasting approach of photovoltaic power based on cloud images and chaotic characteristics[J]. Acta energiae solaris sinica, 2023, 44(12): 74-81.
[11] SHI J, LEE W J, LIU Y Q, et al.Forecasting power output of photovoltaic systems based on weather classification and support vector machines[J]. IEEE transactions on industry applications, 2012, 48(3): 1064-1069.
[12] WU Z J, CUI N B, GONG D Z, et al.Predicting daily global solar radiation in various climatic regions of China based on hybrid support vector machines with meta-heuristic algorithms[J]. Journal of cleaner production, 2023, 385: 135589.
[13] ZHENG L W, LIU Z K, SHEN J N, et al.Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output[J]. Applied energy, 2018, 229: 1128-1139.
[14] BAZINE H, MABROUKI M.Chaotic dynamics applied in time prediction of photovoltaic production[J]. Renewable energy, 2019, 136: 1255-1265.
[15] HAN L, ROMERO C E, YAO Z.Wind power forecasting based on principle component phase space reconstruction[J]. Renewable energy, 2015, 81: 737-744.
[16] XU X F, HU S T, SHI P M, et al.Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: case studies of an offshore wind farm[J]. Energy, 2023, 262: 125342.
[17] 王海燕, 盛昭瀚. 混沌时间序列相空间重构参数的选取方法[J]. 东南大学学报(自然科学版), 2000, 30(5): 113-117.
WANG H Y, SHENG Z H.Choice of the parameters for the phase space reconstruction of chaotic time series[J]. Journal of Southeast University (natural science edition), 2000, 30(5): 113-117.
[18] 张淑清, 李新新, 张立国, 等. 基于符号分析的极大联合熵延迟时间求取方法[J]. 物理学报, 2013, 62(11): 118-123.
ZHANG S Q, LI X X, ZHANG L G, et al.Delay time obtaining method using the maximum joint entroy on the basis of symbolic analysis[J]. Acta physica sinica, 2013, 62(11): 118-123.
[19] 岳顺, 李小奇, 翟长治. 基于改进Cao算法确定奇异谱嵌入维数及应用[J]. 测绘工程, 2015, 24(3): 64-68.
YUE S, LI X Q, ZHAI C Z.Determining the singular spectrum embedding dimension based on an improved Cao algorithm[J]. Engineering of surveying and mapping, 2015, 24(3): 64-68.
[20] 黄磊, 舒杰, 姜桂秀, 等. 基于多维时间序列局部支持向量回归的微网光伏发电预测[J]. 电力系统自动化, 2014, 38(5): 19-24.
HUANG L, SHU J, JIANG G X, et al.Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J]. Automation of electric power systems, 2014, 38(5): 19-24.
[21] YAU H T, KUO P H, CAI D Y, et al.Construction of an online machine tool wear prediction system by using a time-delay phase space reconstruction-based dilation convolutional neural network[J]. IEEE sensors journal, 2023, 23(19): 22295-22312.
[22] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
ZHOU F Y, JIN L P, DONG J.Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251.
[23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[24] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 936-944.
[25] PENG F, MIAO Z, LI F, et al.S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images[J]. Expert systems with applications, 2021, 182: 115306.
[26] 杨晨洲. 分布式光伏电站发电效率提升策略研究[J]. 光源与照明, 2023(9): 123-125.
YANG C Z.Research on strategy of improving generation efficiency of distributed photovoltaic power station[J]. Lamps & lighting, 2023(9): 123-125.
[27] 国家电力投资集团有限公司. 光伏电站人工智能运维大数据处理分析[EB/OL].https://www.datafountain.cn--competitions/303/datasets.
State Power Investment Group Co. Ltd.Artificial intelligence operation and maintenance of photovoltaic power plants big data processing and analysis[EB/OL]. https://www.datafountain.cn--competitions/303/datasets.
[28] 国能日新科技股份有限公司. 国能日新光伏功率预测大赛[EB/OL]: https.//challenge.datacastle.cn/v3.
Guoneng Rixin Technology Co. Ltd.Guoneng Rixin photovoltaic power prediction competition[EB/OL]. https://challenge.datacastle.cn/v3.
PDF(3919 KB)

Accesses

Citation

Detail

Sections
Recommended

/